FOR YOUR SAFETY: This product must be installed and serviced by a professional service technician, qualified in hot water boiler installation and maintenance. Improper installation and/or operation could create carbon monoxide gas in flue gases which could cause serious injury, property damage, or death. Improper installation and/or operation will void the warranty.

WARNING

If the information in this manual is not followed exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.

WHAT TO DO IF YOU SMELL GAS

- Do not try to light any appliance.
- Do not touch any electrical switch; do not use any phone in your building.
- Immediately call your gas supplier from a nearby phone. Follow the gas supplier's instructions.
- If you cannot reach your gas supplier, call the fire department.

Installation and service must be performed by a qualified installer, service agency, or gas supplier.

AVERTISSEMENT

Assurez-vous de bien suivres les instructions données dans cette notice pour réduire au minimum le risque d'incendie ou d'explosion ou pour éviter tout dommage matériel, toute blessure ou la mort.

Ne pas entreposer ni utiliser d'essence ni d'autres vapeurs ou liquides inflammables dans le voisinage de cet appareil ou de tout autre appareil.

QUE FAIRE SI VOUS SENTEZ UNE ODEUR DE GAZ:

- Ne pas tenter d'allumer d'appareils.
- Ne touchez à aucun interrupteur. Ne pas vous servir des téléphones dans le bâtiment où vous vous trouvez.
- Appelez immédiatement votre fournisseur de gaz depuis un voisin. Suivez les instructions du fournisseur.
- Si vous ne pouvez rejoindre le fournisseur de gaz,appelez le sservice des incendies.

L'installation et l'entretien doivent être assurés par un installateur ou un service d'entretien qualifié ou par le fournisseur de gaz.
TABLE OF CONTENTS

SECTION 1.
General Information
- 1.1 Introduction ... 3
- 1.2 Model Identification 3
- 1.3 Warranty .. 4
- 1.4 Dimensions .. 4
- 1.5 Outdoor Installations 6
- 1.6 Locating the Appliance 6
- 1.7 Locating Pump-Mounted Water Heater with Respect to Storage Tank(s) 6
- 1.8 Locating Pump-Mounted Boiler with Respect to Return/Supply Header 6
- 1.9 Locating Appliance for Correct Vent Distance From Outside Wall or Roof Termination 6

SECTION 2.
Venting and Combustion Air
- 2.1 Combustion Air ... 7
- 2.1.1 Combustion Air From Room 7
- 2.1.2 Intake Combustion Air 7
- 2.2 Venting ... 9
- 2.3 Locating Vent & Combustion Air Terminals 9
- 2.3.1 Side Wall Vent Terminal 9
- 2.3.2 Side Wall Combustion Air Terminal 11
- 2.3.3 Vertical Vent Terminal 11
- 2.3.4 Vertical Combustion Air Terminal 15
- 2.4 Common Vent Test – Boilers 15

SECTION 3.
Gas Supply and Piping
- 3.1 Gas Supply and Piping 15

SECTION 4A.
Water Connections – Rheos Boiler
- 4A.1 Heating System Piping:
 - Hot Supply Connections – Boiler 18
- 4A.2 Cold Water Make-Up – Boiler 18
- 4A.3 Water Flow Requirements – Boiler 18
- 4A.4 Freeze Protection – Boiler 19

SECTION 4B.
Water Connections – Rheos Water Heater
- 4B.1 Water System Piping – Water Heater 19
- 4B.2 Hot Water Supply Piping – Water Heater 19
- 4B.3 Water Flow Requirements – Water Heater 20
- 4B.4 Combined Water (portable)
 - Heating and Space Heating 20
- 4B.5 Freeze Protection — Water Heater 20

SECTION 5.
Electrical Connections
- 5.1 Main Power .. 21
- 5.2 Pump Connections 21
- 5.3 Temperature Control – Boiler 21
- 5.4 Temperature Control – Water Heater 21
- 5.4.1 Remote Water Heater Temperature Control 21
- 5.4.2 Internal Water Heater Temperature Control 22
- 5.5 Temperature Control Features 22

- 5.7 Wiring Diagrams .. 25

SECTION 6.
Operating Instructions
- 6.1 Filling the Boiler System 38
- 6.2 Operating the Burner and Set Up 38
- 6.3 Shutting Down the Rheos 40
- 6.4 To Restart the Rheos 40

SECTION 7.
Maintenance
- 7.1 System Maintenance 40
- 7.2 Appliance Maintenance and Component Description 40
- 7.2.1 Burner ... 41
- 7.2.2 Filter ... 41
- 7.2.3 Modulating Gas Valve 41
- 7.2.4 Safety Gas Valve 41
- 7.2.5 Manual Reset High Limit Control 41
- 7.2.6 Temperature Control 41
- 7.2.7 Ignition Control 41
- 7.2.8 Ignitor / Flame Sensor Assembly 42
- 7.2.9 Transformers ... 42
- 7.2.10 Blower ... 42
- 7.2.11 Flow Switch .. 42
- 7.2.12 Heat Exchanger Coil 42
- 7.2.13 Normally Open Vent Valve 43
- 7.2.14 Motorized Safety Valve 43
- 7.2.15 Gas Pressure Switches 44

SECTION 8.
Trouble Shooting
- 8.1 Sequence of Operation 45
- 8.2 Resolving Lockouts 45
- 8.3 Delayed Ignition – Possible Causes 45
- 8.3.1 High Lockup Pressure (LP Appliances)
 - Occurs on Start-up 45
- 8.3.2 Gas Valve Regulation 45
- 8.3.3 Defective Burner - Occurs on Startup or at Burner Shutdown 45
- 8.4 Short Cycling – Boiler 46
- 8.5 Short Cycling – Water Heater 46
- 8.6 High Gas Consumption 46

SECTION 9.
Replacement Parts
- 9.1 General Information 46
- 9.2 Parts List ... 47

Tables Listing ... 56

Figures Listing ... 56
SECTION 1.
General Information

USING THIS MANUAL – Because the Rheos Boilers and Rheos Water Heaters are identical appliances, with the exception of materials of manufacture, labels and ultimate use application, this manual provides information for the proper installation, operation and maintenance of both products. Where differences exist between the application of the appliances and their operation, the sections pertinent to only one appliance or the other will be so identified.

WARNING
The Rheos hydronic, boiler or water heater must be installed in accordance with the procedures detailed in this manual, or the Laars Heating Systems warranty will be voided. The installation must conform to the requirements of the local jurisdiction having authority, and, in the United States, to the latest edition of the National Fuel Gas Code, ANSI Z223.1/NFPA54. In Canada, the installation must conform to the latest edition of CSA B149.1 “Natural Gas and Propane Gas Installation Code, and/or local codes. Where required by the authority having jurisdiction, the installation of Rheos boilers must conform to the Standard for Controls and Safety Devices for Automatically Fired Boilers, ANSI/ASME CSD-1. Any modifications to the boiler, its gas controls, or wiring may void the warranty. If field conditions require modifications, consult the factory representative before initiating such modifications.

1.1 Introduction
This manual provides information necessary for the installation, operation, and maintenance of Laars Heating Systems Rheos (copper tube or cupronickel tubes) appliances. Read it carefully before installation. All application and installation procedures should be reviewed completely before proceeding with the installation. Consult the Laars Heating Systems factory, or local factory representative, with any problems or questions regarding this equipment. Experience has shown that most operating problems are caused by improper installation.

The Rheos appliance is protected against over pressurization. A pressure relief valve is fitted to all appliances. It is installed inside the jacket, at the water outlet of the unit.

IMPORTANT: The inlet gas pressure to the appliance must not exceed 13” W.C. (3.2kPa).

All installations must be made in accordance with 1) American National Standard Z223.1/NFPA54-Latest Edition “National Fuel Gas Code” or 2) CSA B149.1 “Natural Gas and Propane Installation Code” and with the requirement of the local utility or other authorities having jurisdiction. Such applicable requirements take precedence over the general instructions contained herein.

All electrical wiring is to be done in accordance with the local codes, or in the absence of local codes, with: 1) The National Electrical Code ANSI/NFPA No. 70-latest Edition, or 2) CSA STD. C22.1 “Canadian Electrical Code - Part 1”. This appliance must be electrically grounded in accordance with these codes.

1.2 Model Identification
Consult the rating plate on the unit. The following information describes the model number structure.

(1-2) Model Series Designation
R H = Rheos mid-sized commercial

(3) Model Efficiency
C = Mid Efficiency (non-condensing)
H = High Efficiency (condensing)

(4) Usage
H = Hydronic
V = Volume Water

(5-8) Size
1 2 0 0 = 1,200,000 BTU/hr input
1 6 0 0 = 1,600,000 BTU/hr input
2 0 0 0 = 2,000,000 BTU/hr input
2 4 0 0 = 2,400,000 BTU/hr input

Model Designation

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>SERIES</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>H</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>USAGE</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>SIZE</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FUEL</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>ALTITUDE</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>LOCATION</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>FIRING MODE</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>REVISION</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>HEAT EXCHANGER</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>OPTION CODES</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>A</td>
<td>H</td>
<td>B</td>
<td>N</td>
<td>S</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.3 Warranty
Laars Heating Systems’ Rheos appliances are covered by a limited warranty. The owner should fill out the warranty registration card and return it to Laars Heating Systems.

All warranty claims must be made to an authorized Laars Heating Systems representative or directly to the factory. Claims must include the serial number and model (this information can be found on the rating plate), installation date, and name of the installer. Shipping costs are not included in the warranty coverage.

Some accessory items are shipped in separate packages. Verify receipt of all packages listed on the packing slip. Inspect everything for damage immediately upon delivery, and advise the carrier of any shortages or damage. Any such claims should be filed with the carrier. The carrier, not the shipper, is responsible for shortages and damage to the shipment whether visible or concealed.

1.4 Dimensions
The overall dimensions are 34.5” (88cm) wide, 65.75” (167cm) tall, 55” (140cm) deep. Other dimensions can be found in Figure 1.
Figure 1. Dimensional Drawing.

<table>
<thead>
<tr>
<th>Model</th>
<th>"V" Vent Outlet Connection</th>
<th>"A" Air Inlet Connection</th>
<th>"W" Inlet Water Connection Non-Pump-Mounted</th>
<th>"P" Inlet Water Connection Pump-Mounted</th>
<th>"S" Outlet Water Connection All Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inches</td>
<td>cm</td>
<td>inches</td>
<td>cm</td>
<td>NPT</td>
</tr>
<tr>
<td>1200</td>
<td>6</td>
<td>15</td>
<td>6</td>
<td>15</td>
<td>2-1/2"</td>
</tr>
<tr>
<td>1600</td>
<td>6</td>
<td>15</td>
<td>8</td>
<td>20</td>
<td>2-1/2"</td>
</tr>
<tr>
<td>2000</td>
<td>7</td>
<td>18</td>
<td>8</td>
<td>20</td>
<td>3"</td>
</tr>
<tr>
<td>2400</td>
<td>10</td>
<td>25</td>
<td>8</td>
<td>20</td>
<td>3"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>"G" Gas Connection, Std/Control Pk A Nat/LP</th>
<th>Control Pk B & E Nat</th>
<th>Control Pk B & E LP</th>
<th>"B"</th>
<th>"C"</th>
<th>"D"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NPT</td>
<td>NPT</td>
<td>NPT</td>
<td>inches</td>
<td>cm</td>
<td>inches</td>
</tr>
<tr>
<td>1200</td>
<td>1"</td>
<td>1-1/2"</td>
<td>1-1/2"</td>
<td>34-1/4</td>
<td>87</td>
<td>27-3/4</td>
</tr>
<tr>
<td>1600</td>
<td>1-1/2"</td>
<td>2"</td>
<td>2"</td>
<td>34-1/4</td>
<td>87</td>
<td>25-1/2</td>
</tr>
<tr>
<td>2000</td>
<td>1-1/2"</td>
<td>2"</td>
<td>1"</td>
<td>34-1/4</td>
<td>87</td>
<td>24-3/4</td>
</tr>
<tr>
<td>2400</td>
<td>1-1/2"</td>
<td>2"</td>
<td>2"</td>
<td>32</td>
<td>81</td>
<td>22-1/2</td>
</tr>
</tbody>
</table>
1.5 Outdoor Installations

Attach the appropriate termination and appliance adaptor to the vent outlet (see Table 1). Units are shipped with a louvered cover over the ducted air connection. Do not remove this cover, and/or add any piping to the ducted air connection. The unit will take its combustion air through the louvers in the jacket.

WARNING
The outdoor terminal gets hot. Unit must be installed in such a way as to reduce the risk of burns from contact with the vent terminal.

<table>
<thead>
<tr>
<th>Model (Size)</th>
<th>Termination</th>
<th>Appliance Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>D2008300</td>
<td>D2008500</td>
</tr>
<tr>
<td>1600</td>
<td>D2008300</td>
<td>D2008500</td>
</tr>
<tr>
<td>2000</td>
<td>D2008400</td>
<td>D2008600</td>
</tr>
<tr>
<td>2400</td>
<td>D2007500</td>
<td>D2007600</td>
</tr>
</tbody>
</table>

Table 1. Terminals for Outdoor Installation.

In installations where the air temperature may go below 15°F (-9°C), a valve heater kit, part number R2010100, must be installed on the operating gas valve. Instructions for the installation of the valve heater are included with the kit.

NOTE: Units built with control packs B and E have two actuators. Therefore, two heater kits must be used.

1.6 Locating the Appliance

The appliance should be located to provide clearances on all sides for maintenance and inspection. It should not be located in an area where leakage of any connections will result in damage to the area adjacent to the appliance or to lower floors of the structure.

When such a location is not available, it is recommended that a suitable drain pan, adequately drained, be installed under the appliance.

The appliance is design certified by CSA-International for installation on combustible flooring; in basements; in closets, utility rooms or alcoves. **Rheos Boilers or Water Heaters must never be installed on carpeting.** The location for the appliance should be chosen with regard to the vent pipe lengths and external plumbing. The unit shall be installed such that the gas ignition system components are protected from water (dripping, spraying, rain, etc.) during operation and service (circulator replacement, control replacement, etc.). When vented vertically, the Rheos must be located as close as practical to a chimney or gas vent. If the vent terminal and/or combustion air terminal terminate through a wall, and there is potential for snow accumulation in the local area, both terminals should be installed at an appropriate level above grade.

The dimensions and requirements that are shown in Table 2 should be met when choosing the locations for the appliance:

<table>
<thead>
<tr>
<th>Appliance Surface</th>
<th>Required Clearance From Combustible Material</th>
<th>Suggested Service Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inches</td>
<td>cm</td>
</tr>
<tr>
<td>Piping Side</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Opposite Side</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Top</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Back</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Front</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Vent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Clearances.

1.7 Locating Pump-Mounted Water Heater with Respect to Storage Tank(s)

For best results a pump-mounted Rheos water heater should be located within 15 feet (4.6m) of the storage tank(s). The pump is sized for 30 feet (9.1m) of piping.

Water heater pumps are sized for water hardness; 7.6 to 17 grains per gallon for normal water, and greater than 17 grains per gallon for hard water. If the system has soft water (1 to 7.5 grains per gallon hardness), but the Rheos has a normal water pump mounted in it, please consult the factory for assistance.

If the appliance must be installed with longer piping runs, then larger diameter pipe or tubing may be able to be used, in some instances. Consult the factory for assistance.

1.8 Locating Pump-Mounted Boiler with Respect to Return/Supply Header

For the best results a pump-mounted Rheos Boiler should be located within 15 feet (4.6m) of the supply and return headers. The pump is sized for 30 feet (9.1m) of piping, in most cases, enough for primary-secondary piping systems.

If the appliance must be installed with longer piping runs, then larger diameter tubing may be able to be used, in some instances. Consult the factory for assistance.

1.9 Locating Appliance for Correct Vent Distance From Outside Wall or Roof Termination

The forced draft combustion air blower in the appliance has sufficient power to vent properly when the guidelines in Table 3 are followed.

NOTE: When located on the same wall, the Rheos combustion air intake terminal must be installed a minimum of 12" (30cm) below the exhaust vent terminal and separated by a minimum of 36 inches (91cm) horizontally.
SECTION 2.
Venting and Combustion Air

2.1 Combustion Air

Rheos boilers and water heaters must have provisions for combustion and ventilation air in accordance with section 5.3, Air for Combustion and Ventilation, of the National Fuel Gas Code, ANSI Z223.1, or Sections 7.2, 7.3 or 7.4 of CSA B149.1, Installation Codes, and applicable provisions of the local building codes.

A Rheos unit can take combustion air from the space in which it is installed, or the combustion air can be ducted directly to the unit. Ventilation air must be provided in either case.

2.1.1 Combustion Air From Room

In the United States, the most common requirements specify that the space shall communicate with the outdoors in accordance with method 1 or 2, which follow. Where ducts are used, they shall be of the same cross-sectional area as the free area of the openings to which they connect.

Method 1: Two permanent openings, one commencing within 12" (300mm) of the top and one commencing within 12" (300mm) of the bottom, of the enclosure shall be provided. The openings shall communicate directly, or by ducts, with the outdoors or spaces that freely communicate with the outdoors. When directly communicating with the outdoors, or when communicating to the outdoors through vertical ducts, each opening shall have a minimum free area of 1 square inch per 4000 Btu/hr (550 square mm/kW) of total input rating of all equipment in the enclosure. When communicating to the outdoors through horizontal ducts, each opening shall have a minimum free area of not less than 1 square inch per 2000 Btu/hr (1100 square mm/kW) of total input rating of all equipment located in the enclosure. This opening must not be less than the sum of the areas of all vent connectors in the confined space.

Other methods of introducing combustion and ventilation air are acceptable, providing they conform to the requirements in the applicable codes listed above.

In Canada, consult local building and safety codes or, in absence of such requirements, follow CAN/CGA B149.

2.1.2 Intake Combustion Air

The combustion air can be taken through the wall, or through the roof. When taken from the wall, it must be taken from out-of-doors by means of the Laars horizontal wall terminal, shown in Table 4. See Table 3 to select the appropriate diameter air pipe. When taken from the roof, a field-supplied rain cap or an elbow arrangement must be used to prevent entry of rain water (see Figure 2).

Use single-wall galvanized pipe for the combustion air intake (see Table 5), sized per Section 1.8. Route the intake to the heater as directly as possible. Seal all joints with tape. Provide adequate hangers. The unit must not support the weight of the combustion air intake pipe. Maximum linear pipe length allowed is 50 feet (15.2m). Up to five elbows can be used with the 50 feet of pipe. Subtract 10 allowable linear feet for every additional elbow used.

Table 3. Vent / Air Pipe Sizes.

<table>
<thead>
<tr>
<th>Model</th>
<th>Intake Size</th>
<th>Exhaust Size</th>
<th>Intake Maximum Run</th>
<th>Exhaust Maximum Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>6" (15 cm) dia.</td>
<td>6" (15 cm) dia.</td>
<td>50 linear feet with 5 elbows</td>
<td>50 linear feet with 5 elbows</td>
</tr>
<tr>
<td>1600</td>
<td>8" (20 cm) dia.</td>
<td>6" (15 cm) dia.</td>
<td>50 linear feet with 5 elbows</td>
<td>50 linear feet with 5 elbows</td>
</tr>
<tr>
<td>2000</td>
<td>8" (20 cm) dia.</td>
<td>7" (18 cm) dia.</td>
<td>50 linear feet with 5 elbows</td>
<td>50 linear feet with 5 elbows</td>
</tr>
<tr>
<td>2400</td>
<td>8" (20 cm) dia.</td>
<td>10" (25 cm) dia.</td>
<td>50 linear feet with 5 elbows</td>
<td>50 linear feet with 5 elbows</td>
</tr>
</tbody>
</table>

![Figure 2. Combustion Air and Vent Through Roof.](image-url)
A=	Clearance above grade, veranda, porch, deck, or balcony	12 inches (30 cm)	12 inches (30 cm)
B=	Clearance to window or door that may be opened	4 feet (1.2 m) below or to side of opening; 1 foot (30 cm) above opening	36 inches (91 cm)
C=	Clearance to permanently closed window	See note 4	See note 5
D=	Vertical clearance to ventilated soffit located above the terminal within a horizontal distance of 2 feet (61 cm) from the center line of the terminal	See note 4	See note 5
E=	Clearance to unventilated soffit	See note 4	See note 5
F=	Clearance to outside corner	See note 4	See note 5
G=	Clearance to inside corner	See note 4	See note 5
H=	Clearance to each side of center line extended above meter/regulator assembly	See note 4	3 feet (91 cm) within a height 15 feet above the meter/regulator assembly
I=	Clearance to service regulator vent outlet	See note 4	3 feet (91 cm)
J=	Clearance to nonmechanical air supply inlet to building or the combustion air inlet to any other appliance	4 feet (1.2 m) below or to side of opening; 1 foot (30 cm) above opening	36 inches (91 cm)
K=	Clearance to a mechanical air supply inlet	3 feet (91 cm) above if within 10 feet (3 m) horizontally	6 feet (1.83 m)
L=	Clearance above paved sidewalk or paved driveway located on public property	Vent termination not allowed in this location for category IV appliances. For Category III appliances, vent must terminate at least 7 feet (2.13 m) above the sidewalk or driveway	Vent termination not allowed in this location for category IV appliances. A vent shall not terminate directly above a sidewalk or paved driveway that is located between two single family dwellings and serves both dwellings. For Category III appliances that do not violate the previous condition, vent must terminate at least 7 feet (2.13 m) above the sidewalk or driveway
M=	Clearance under veranda, porch, deck, or balcony	See note 4	12 inches (30 cm) (see note 3)

Notes:
1. In accordance with the current ANSI Z223.1 / NFPA 54 National Fuel Gas Code.
2. In accordance with the current CAN/CGA-B149 Installation Codes.
3. Permitted only if veranda, porch, deck, or balcony is fully open on a minimum of two sides beneath the floor.
4. For clearances not specified in ANSI Z223.1 / NFPA 54, clearance is in accordance with local installation codes and the requirements of the gas supplier.
5. For clearances not specified in CAN/CGA-B149, clearance is in accordance with local installation codes and the requirements of the gas supplier.

Figure 3. Combustion Air and Vent Through Side Wall.
Table 4. Horizontal Vent and Air Terminals For Indoor Installations.

<table>
<thead>
<tr>
<th>Model</th>
<th>Horizontal Combustion Air Terminal</th>
<th>Horizontal Vent Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>20260701</td>
<td>D2004500</td>
</tr>
<tr>
<td>1600</td>
<td>20260703</td>
<td>D2004500</td>
</tr>
<tr>
<td>2000</td>
<td>20260703</td>
<td>D2004600</td>
</tr>
<tr>
<td>2400</td>
<td>20260703</td>
<td>D2006200</td>
</tr>
</tbody>
</table>

Table 5. Required Combustion Air Piping Material.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe</td>
<td>Single-wall galvanized steel pipe, 24 gauge minimum (sized per section 1.9)</td>
</tr>
<tr>
<td>Joint Sealing</td>
<td>Permanent duct tape or aluminum tape</td>
</tr>
<tr>
<td>Insulation</td>
<td>Not required, but recommended R5 insulation for cold installations (consult American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) handbook)</td>
</tr>
</tbody>
</table>

Table 6. Required Venting Material.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venting System</td>
<td>Heat-Fab®, Inc. Saf-T Vent®GC or CI, Metal-Fab®, Inc. Corr/Guard, or equivalent sealed stainless steel system certified to UL1738.</td>
</tr>
<tr>
<td>Insulation</td>
<td>Not required, but recommended R5 insulation with protective cover for cold installations (consult American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) handbook)</td>
</tr>
</tbody>
</table>

2.2 Venting

The Rheos is a Category IV appliance and must be installed with a stainless steel venting system that complies with the UL 1738 Standard (see Table 6). It must be installed per this installation manual and the venting system manufacturer’s Installation Instructions. The unit’s vent can terminate through the roof, or through an outside wall. It can be installed through walls that are from 3” (7.6cm) to 12” (30cm) in thickness.

See Table 3 to select the appropriate vent pipe diameter. The first section of venting attached to the boiler must include a condensate drain fitting and condensate trap. Route the vent pipe to the heater as directly as possible. Seal all joints and provide adequate hangers as required in the venting system manufacturer’s Installation Instructions. Horizontal portions of the venting system must be supported to prevent sagging and may not have any low sections that could trap condensate. The unit must not support the weight of the vent pipe. Horizontal runs must slope upwards not less than ¼ inch per foot (21mm/m) from the unit to the vent terminal. Up to five elbows can be used with the 50 feet (15.2m) of pipe. Subtract 10 allowable linear feet for every additional elbow used.

IMPORTANT NOTE ABOUT COMMON VENTING:
A single vent that is shared by multiple Rheos units MUST be engineered by a competent venting specialist, and involves the selection of draft inducing equipment, hardware and controls to properly balance flue gas pressures. Do not common vent Rheos units unless the vent system meets this requirement. Rheos units are never permitted to share a vent with Category I appliances.

For outdoor applications, see Section 1.5.

Condensate Drain Connection: A condensate drain connection shall be provided on the first section of venting attached to the boiler. Connect a clear plastic tube between that drain connection on the vent and a floor drain (or optional condensate pump if a floor drain is not accessible). The plastic tube shall be formed into a loop (trap) to drain condensate that collects in the vent system without permitting flue gases to escape. The condensate drain must be installed so as to prevent accumulation of condensate. Consult local codes for disposal method.

2.3 Locating Vent & Combustion Air Terminals

2.3.1 Side Wall Vent Terminal

The appropriate Laars side wall vent hood must be used, and is listed in the installation and operation manual. The terminal provides a means of installing the vent piping through the building wall, and must be located in accordance with ANSI Z223.1/NFPA 54 and applicable local codes. In Canada, the installation must be in accordance with CSA B149.1 or .2 and local applicable codes. Consider the following when installing the terminal:

1. The figure in this addendum shows the requirements for mechanical vent terminal clearances for the U.S. and Canada.
2. Vent terminals for condensing appliances or appliances with condensing vents are not permitted to terminate above a public walkway, or over an area where condensate or vapor could create a nuisance or hazard.
3. Locate the vent terminal so that vent gases cannot be drawn into air conditioning system inlets.

4. Locate the vent terminal so that vent gases cannot enter the building through doors, windows, gravity inlets or other openings. Whenever possible, locations under windows or near doors should be avoided.

5. Locate the vent terminal so that it cannot be blocked by snow. The installer may determine that a vent terminal must be higher than the minimum shown in codes, depending upon local conditions.

6. Locate the terminal so the vent exhaust does not settle on building surfaces or other nearby objects. Vent products may damage such surfaces or objects.

7. If the boiler or water heater uses ducted combustion air from an intake terminal located on the same wall, locate the vent terminal at least 3 feet (0.9m) horizontally from the combustion air terminal, and locate the vent terminal at least 1 foot (0.3m) above the combustion air terminal.

From Massachusetts Rules and Regulations 248 CMR 5.08:

(a) For all side wall horizontally vented gas fueled equipment installed in every dwelling, building or structure used in whole or in part for residential purposes, including those owned or operated by the Commonwealth and where the side wall exhaust vent termination is less than seven (7) feet above finished grade in the area of the venting, including but not limited to decks and porches, the following requirements shall be satisfied:

1. INSTALLATION OF CARBON MONOXIDE DETECTORS.

 At the time of installation of the side wall horizontal vented gas fueled equipment, the installing plumber or gasfitter shall observe that a hard-wired carbon monoxide detector with an alarm and battery back-up is installed on the floor level where the gas equipment is to be installed. In addition, the installing plumber or gasfitter shall observe that a battery operated or hard-wired carbon monoxide detector with an alarm is installed on each additional level of the dwelling, building or structure served by the side wall horizontal vented gas fueled equipment. It shall be the responsibility of the property owner to secure the services of qualified licensed professionals for the installation of hard-wired carbon monoxide detectors.

 a. In the event that the side wall horizontally vented gas fueled equipment is installed in a crawl space or an attic, the hard-wired carbon monoxide detector with alarm and battery back-up may be installed on the next adjacent floor level.

 b. In the event that the requirements of this subdivision cannot be met at the time of completion of installation, the owner shall have a period of thirty (30) days to comply with the above requirements; provided, however, that during said thirty (30) day period, a battery operated carbon monoxide detector with an alarm shall be installed.

2. APPROVED CARBON MONOXIDE DETECTORS.

 Each carbon monoxide detector as required in accordance with the above provisions shall comply with NFPA 720 and be ANSI/UL 2034 listed and IAS certified.

3. SIGNAGE.

 A metal or plastic identification plate shall be permanently mounted to the exterior of the building at a minimum height of eight (8) feet

Table 7. Gas Piping Sizes.

<table>
<thead>
<tr>
<th>Model and Gas Type</th>
<th>Distance from Gas Meter or Last Stage Regulator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-50 feet</td>
</tr>
<tr>
<td>1200 natural</td>
<td>2”</td>
</tr>
<tr>
<td>1200 propane</td>
<td>1-1/2”</td>
</tr>
<tr>
<td>1600 natural</td>
<td>2-1/2”</td>
</tr>
<tr>
<td>1600 propane</td>
<td>2”</td>
</tr>
<tr>
<td>2000 natural</td>
<td>2-1/2”</td>
</tr>
<tr>
<td>2000 propane</td>
<td>2-1/2”</td>
</tr>
<tr>
<td>2400 natural</td>
<td>2-1/2”</td>
</tr>
<tr>
<td>2400 propane</td>
<td>2”</td>
</tr>
</tbody>
</table>

Notes:
1. These figures are based on 1/2” 0.12kPa water column pressure drop.
2. Check supply pressure and local code requirements before proceeding with work.
3. Pipe fittings must be considered when determining gas pipe sizing.
above grade directly in line with the exhaust vent terminal for the horizontally vented gas fueled heating appliance or equipment. The sign shall read, in print size no less than one-half (½) inch in size, “GAS VENT DIRECTLY BELOW. KEEP CLEAR OF ALL OBSTRUCTIONS”.

4. INSPECTION.
 The state or local gas inspector of the side wall horizontally vented gas fueled equipment shall not approve the installation unless, upon inspection, the inspector observes carbon monoxide detectors and signage installed in accordance with the provisions of 248 CMR 5.08(2)(a) 1 through 4.

(b) EXEMPTIONS: The following equipment is exempt from 248 CMR 5.08(2)(a) 1 through 4:
 1. The equipment listed in Chapter 10 entitled “Equipment Not Required To Be Vented” in the most current edition of NFPA 54 as adopted by the Board; and
 2. Product Approved side wall horizontal vented gas fueled equipment installed in a room or structure separate from the dwelling, building or structure used in whole or in part for residential purposes.

(c) MANUFACTURER REQUIREMENTS – GAS EQUIPMENT VENTING SYSTEM PROVIDED. When the manufacturer of Product Approved side wall horizontally vented gas equipment provides a venting system design or venting system components with the equipment, the instructions provided by the manufacturer for installation of the equipment and the venting system shall include:
 1. Detailed instructions for the installation of the venting system design or the venting system components; and
 2. A complete parts list for the venting system design or venting system.

(d) MANUFACTURER REQUIREMENTS – GAS EQUIPMENT VENTING SYSTEM NOT PROVIDED. When the manufacturer of a Product Approved side wall horizontally vented gas fueled equipment does not provide the parts for venting the fuel gases, but identifies “special venting systems”, the following requirements shall be satisfied by the manufacturer:
 1. The identification of each “special venting system” shall include either the listing of the website, phone number or manufacturer’s address where the venting system installation instructions can be obtained; and
 2. The “special venting systems” shall be Product Approved by the Board, and the instructions provided with that system shall include a parts list and detailed installation instructions.

(e) A copy of all installation instructions for the Product Approved side wall horizontally vented gas fueled equipment, and all the venting instructions, parts lists, and/or design instructions for the venting system shall remain with the appliance or equipment at the completion of the installation. Manufacturers’ websites where venting system installation instructions may be obtained is located on the Laars website at: http://www.laars.com.

2.3.2 Side Wall Combustion Air Terminal
 The Laars side wall combustion air terminal (see Table 4) must be used when the heater takes air from a side wall. Consider the following when installing the terminal:
 1. Do not locate the air inlet terminal near a source of corrosive chemical fumes (e.g., cleaning fluid, chlorine compounds, etc.)
 2. Locate the terminal so that it will not be subject to damage by accident or vandalism. It must be at least 7 feet (2.1m) above a public walkway.
 3. Locate the combustion air terminal so that it cannot be blocked by snow. The National Fuel Gas Code requires that it be at least 12 inches (30cm) above grade, but the installer may determine it should be higher, depending upon local conditions.
 4. If the Rheos is side-wall vented to the same wall, locate the vent terminal at least 3 feet (0.9m) horizontally from the combustion air terminal, and locate the vent terminal at least 1 foot (0.3m) above the combustion air terminal (see Figure 3).

2.3.3 Vertical Vent Terminal
 When the unit is vented through the roof, the vent must extend at least 3 feet (0.9m) above the point at which it penetrates the roof. It must extend at least 2 feet (0.6m) higher than any portion of a building within a horizontal distance of 10 feet (3.0m), and high enough above the roof line to prevent blockage from snow. When the combustion air is taken from the roof, the combustion air must terminate at least 12” (30cm) below the vent terminal (see Figure 2).
ADJUSTMENT PROCEDURE TO MAINTAIN 130°F INLET TEMP.

1. Turn on heater and open valves A & B
2. After steady-state operation, if T_1 is less than 130°F, slowly close valve B until T_1 climbs to 130°F
3. If T_1 is greater than 130°F, slowly close valve A until T_1 drops to 130°F
4. Check after system operating temperature has stabilized. Make final adjustments
<table>
<thead>
<tr>
<th>Model (Size)</th>
<th>Flow gpm</th>
<th>H/L feet</th>
<th>Flow lpm</th>
<th>H/L m</th>
<th>Flow gpm</th>
<th>H/L feet</th>
<th>Flow lpm</th>
<th>H/L m</th>
<th>Flow gpm</th>
<th>H/L feet</th>
<th>Flow lpm</th>
<th>H/L m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>104</td>
<td>18</td>
<td>395</td>
<td>5.5</td>
<td>84</td>
<td>12</td>
<td>316</td>
<td>3.7</td>
<td>70</td>
<td>8</td>
<td>264</td>
<td>2.4</td>
</tr>
<tr>
<td>1600</td>
<td>139</td>
<td>22</td>
<td>527</td>
<td>6.7</td>
<td>111</td>
<td>14</td>
<td>422</td>
<td>4.3</td>
<td>93</td>
<td>10</td>
<td>351</td>
<td>3.0</td>
</tr>
<tr>
<td>2000</td>
<td>174</td>
<td>20</td>
<td>659</td>
<td>6.1</td>
<td>139</td>
<td>13</td>
<td>527</td>
<td>4.0</td>
<td>116</td>
<td>9</td>
<td>439</td>
<td>2.7</td>
</tr>
<tr>
<td>2400</td>
<td>209</td>
<td>18</td>
<td>791</td>
<td>5.5</td>
<td>167</td>
<td>12</td>
<td>632</td>
<td>3.7</td>
<td>139</td>
<td>8</td>
<td>527</td>
<td>2.4</td>
</tr>
</tbody>
</table>

NOTE: Maximum temperature rise is 30°F (17°C), as shown. Headloss is for boiler’s heat exchanger only.

Table 8. Water Flow Requirements, RHCH (Boiler).

Figure 6. Hydronic Piping — One Boiler, Multi-Temperature System.
OPTIONAL PUMP MOUNTED UNIT AVAILABLE

BOILER CIRC. PUMP
COLD WATER MAKE-UP
SYSTEM PUMP
SYSTEM SUPPLY
SYSTEM RETURN

LEGEND
THERMOMETER
TEMPERATURE SENSOR
GLOBE VALVE
CHECK VALVE
PRESSURE REDUCING VALVE W/ FAST FILL BYPASS
PURGE VALVE
3-WAY VALVE
PUMP
EXPANSION TANK WITH AIR SCOOP AND AUTO AIR VENT
PRIMARY/SECONDARY MANDATORY FOR ALL VARIABLE FLOW SYSTEMS
INSTALL AIR VENTS AT HIGH POINTS IN SYSTEM PIPING & SIZING OF EXPANSION TANK PER TANK MANUFACTURER'S INSTRUCTIONS DIMENSION "C" TO BE 4 PIPE DIAMETERS DIMENSION "D" TO BE 18" MINIMUM
BOILER CIRCUIT PIPING MUST BE EQUAL TO BOILER WATER CONNECTION SIZE
BOILER CIRC. PUMP SIZED FOR FLOW THROUGH BOILER
BOILER CIRC. PUMP TO BE USED WITH EM2 SYSTEM TEMP. INTERLOCK REQUIRED
DOTTED DEVICES INDICATE ALTERNATE LOCATIONS
MULTIPLE STAGE BOILERS RECOMMENDED
PUT BOILER CONTROL SENSOR IN THE OUTLET WHEN USING THIS PIPING STYLE
CAUTION: THIS DRAWING SHOWS SUGGESTED PIPING CONFIGURATION AND VALVING. CHECK WITH LOCAL CODES AND ORDINANCES FOR ADDITIONAL REQUIREMENTS.

DIMENSION "C" TO BE 4 PIPE DIAMETERS
DIMENSION "D" TO BE 18" MINIMUM

Adaptment Procedure to Maintain 130°F Inlet Temp.

1. Turn on heater and open valves A & B
2. After steady-state operation, if T1 is less than 130°F, slowly close valve B until T1 climbs to 130°F
3. If T1 is greater than 130°F, slowly close valve A until T1 drops to 130°F
4. Check after system operating temperature has stabilized. Make final adjustments.

Figure 7. Hydronic Piping - Alternate System.

Figure 8. Hydronic Piping - Alternate Low Temperature System.
2.3.4 Vertical Combustion Air Terminal

When combustion air is taken from the roof, a field-supplied rain cap or an elbow arrangement must be used to prevent entry of rain water (see Figure 2). The opening on the end of the terminal must be at least 12" (30cm) above the point at which it penetrates the roof, and high enough above the roof line to prevent blockage from snow. When the vent terminates on the roof, the combustion air must terminate at least 12" (30cm) below the vent terminal.

2.4 Common Vent Test — Boilers

NOTE: This section does not describe a method for common venting Rheos units. It describes what must be done when a unit is removed from a common vent system. Rheos units require special vent systems and fan for common vent. Contact the factory if you have questions about common venting Rheos units.

When an existing boiler is removed from a common venting system, the common venting system is likely to be too large for proper venting of the appliances remaining connected to it.

At the time of removal of an existing boiler, the following steps shall be followed with each appliance remaining connected to the common venting system placed in operation, while the other appliances remaining connected to the common venting system are not in operation.

1. Seal any unused openings in the common venting system.
2. Visually inspect the venting system for proper size and horizontal pitch and determine there is no blockage or restriction, leakage, corrosion and other deficiencies which could cause an unsafe condition.
3. Insofar as it is practical, close all building doors and windows and all doors between the space in which the appliances remaining connected to the common venting system are located and other spaces of the building. Turn on clothes dryers and any appliance not connected to the common venting system. Turn on any exhaust fans, such as range hoods and bathroom exhausts, so they will operate at maximum speed. Do not operate a summer exhaust fan. Close fireplace dampers.
4. Place in operation the appliance being inspected. Follow the lighting instructions. Adjust thermostat so appliance will operate continuously.
5. Test for spillage at the draft hood relief opening after 5 minutes of main burner operation. Use the flame of a match or candle, or smoke from a cigarette, cigar or pipe.
6. After it has been determined that each appliance remaining connected to the common venting system properly vents when tested as outlined above, return doors, windows, exhaust fans, fireplace dampers and any other gas burning appliance to their previous conditions of use.
7. Any improper operation of the common venting system should be corrected so that the installation conforms to the National Fuel Gas Code, ANSI Z223.1/NFPA 54 and/or CSA B149.1, Installation Codes. When resizing any portion of the common venting system, the common venting system should be resized to approach the minimum size as determined using the appropriate tables in Part II of the National Fuel Gas Code, ANSI Z223.1 NFPA 54 and/or CSA B149.1, Installation Codes.

SECTION 3. Gas Supply and Piping

3.1 Gas Supply and Piping

Gas piping should be supported by suitable hangers or floor stands, not the appliance.

Review the following instructions before proceeding with the installation.

1. Verify that the appliance is fitted for the proper type of gas by checking the rating plate. Laars Heating Systems appliances are normally equipped to operate at elevations up to 2000 feet (610m). However, the appliance will function properly without the use of high altitude modification at elevations up to 10,000 feet (3050 m).
2. The maximum inlet gas pressure must not exceed 13" W.C. (3.2kPa). The minimum inlet natural gas pressure is 4" W.C. (1.0kPa) and minimum inlet propane gas pressure is 6" (1.5kPa).
3. Refer to Table 7, size supply.

<table>
<thead>
<tr>
<th>Model (Size)</th>
<th>Flow gpm</th>
<th>H/L feet</th>
<th>Temp Rise (°F)</th>
<th>Flow lpm</th>
<th>H/L m</th>
<th>Temp Rise (°C)</th>
<th>Flow gpm</th>
<th>H/L feet</th>
<th>Temp Rise (°F)</th>
<th>Flow lpm</th>
<th>H/L m</th>
<th>Temp Rise (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>119</td>
<td>20</td>
<td>18</td>
<td>449</td>
<td>6.1</td>
<td>76</td>
<td>83</td>
<td>12</td>
<td>23</td>
<td>351</td>
<td>3.7</td>
<td>13</td>
</tr>
<tr>
<td>1600</td>
<td>161</td>
<td>29</td>
<td>17</td>
<td>609</td>
<td>8.8</td>
<td>10</td>
<td>132</td>
<td>20</td>
<td>21</td>
<td>500</td>
<td>6.1</td>
<td>12</td>
</tr>
<tr>
<td>2000</td>
<td>182</td>
<td>22</td>
<td>19</td>
<td>690</td>
<td>6.7</td>
<td>11</td>
<td>149</td>
<td>15</td>
<td>23</td>
<td>565</td>
<td>4.6</td>
<td>13</td>
</tr>
<tr>
<td>2400</td>
<td>237</td>
<td>23</td>
<td>18</td>
<td>898</td>
<td>7.0</td>
<td>10</td>
<td>186</td>
<td>14</td>
<td>23</td>
<td>703</td>
<td>4.3</td>
<td>13</td>
</tr>
</tbody>
</table>

Note: Soft Water: 1 to 7.5 grains per gallon
Normal Water: 7.6 to 17 grains per gallon
Hard Water: More than 17 grains per gallon

Table 9. Water Flow Requirements, RHCV (Water Heater).
Figure 9. Water Heater Piping — One Heater, One Tank.

Figure 10. Water Heater Piping — Multiple Heaters, One Tank.
CAUTION: THIS DRAWING SHOWS SUGGESTED PIPING CONFIGURATION AND VALVING CHECK WITH LOCAL CODES AND ORDINANCES FOR ADDITIONAL REQUIREMENTS

NOTES:
1. OPTIONAL CWMU & RECIRC. LINE LOCATION.
2. WHEN USING INTERMITTENT PUMP AND EMP WELL IN LOWER 1/3 OF TANK WITH HEAT SENCING COMPOUND.
3. BACK FLOW PREVENTER MAY BE REQUIRED CHECK LOCAL CODES.
4. THERMAL EXPANSION TANK MAY BE REQUIRED CHECK LOCAL CODES.
5. WHEN USING OPTIONAL FACTORY MOUNTED PUMP, MAX PIPE LENGTH 30' TOTAL, 6-90° ELBOWS, FULL PIPE SIZE.
6. THIS DRAWING DEPICTS A TWO-PASS HEAT EXCHANGER.
7. CAUTION: PUMP SIZING MUST BE BASED UPON WATER HARDNESS AT JOB SITE

KEY:
WATER CATEGORY GRAIN HARDNESS PER GALLON
S = SOFT 1 THROUGH 7.5
N = NORMAL 7.6 THROUGH 17
H = HARD OVER 18
17.1 PARTS PER MILLION = 1 GRAIN HARDNESS PER GALLON

LEGEND
THERMOMETER
TEMPERATURE SENSOR
GLOBE VALVE
CHECK VALVE
PRESSURE REDUCING VALVE W/FAST FILL BYPASS

Figure 11. Water Heater Piping — One Heater, Multiple Tanks.

Figure 12. Water Heater Piping — Multiple Heaters, Multiple Tanks.
4. Run gas supply line in accordance with all applicable codes.
 Note: If you have a boiler/water heater with a normally open vent valve, install a vent line from the vent valve to an outside location as required by your installation code or IRI requirement. **Do not remove 3/4 inch pipe plug from the vent value if venting from the normally open vent valve is not required by your installation code.**

5. Locate and install manual shutoff valves in accordance with state and local requirements.

6. A sediment trap must be provided upstream of the gas controls.

7. All threaded joints should be coated with piping compound resistant to action of liquefied petroleum gas.

8. The appliance and its individual shutoff valve must be disconnected from the gas supply piping during any pressure testing of that system at test pressures in excess of 1/2 PSIG (3.45kpa).

9. The unit must be isolated from the gas supply system by closing its individual manual shutoff valve during any pressure testing of the gas supply piping system at test pressures equal to or less than 1/2 PSIG (3.45kpa).

10. The appliance and its gas connection must be leak tested before placing it in operation.

11. Purge all air from gas lines.

 WARNING:
 Open flame can cause gas to ignite and result in property damage, severe injury, or loss of life.

NOTE: The Rheos appliance and all other gas appliances sharing the gas supply line must be firing at maximum capacity to properly measure the inlet supply pressure. The pressure can be measured at the supply pressure port on the gas valve. Low gas pressure could be an indication of an undersized gas meter, undersized gas supply lines and/or an obstructed gas supply line. A bleed line from the diaphragm-type automatic valve shall be vented per local code requirements. Rheos units are equipped with low and high gas pressure switches that are integrally vent limited. These types of devices do not require venting to atmosphere.

SECTION 4A.
Water Connections — Rheos Boiler

4A.1 Heating System Piping:
Hot Supply Connections — Boiler

NOTE: This appliance must be installed in a closed pressure system with a minimum of 12 psi (82.7kPa) static pressure at the boiler.

Hot water piping should be supported by suitable hangers or floor stands. Do not support piping with this appliance. Due to expansion and contraction of copper pipe, consideration should be given to the type of hangers used. Rigid hangers may transmit noise through the system resulting from the piping sliding in the hangers. It is recommended that padding be used when rigid hangers are installed. Maintain 1" (2.5cm) clearance to combustibles for hot water pipes.

Pipe the discharge of the relief valve (full size) to a drain or in a manner to prevent injury in the event of pressure relief. Install an air purger, an air vent, a diaphragm-type expansion tank, and a hydronic flow check in the system supply loop. Minimum fill pressure must be 12psig (82.7kPa). Install shutoff valves where required by code.

Suggested piping diagrams are shown in Figures 4, 5, 6, 7 and 8. These diagrams are meant only as a guide. Components required by local codes must be properly installed.

4A.2 Cold Water Make-Up — Boiler

1. Connect the cold water supply to the inlet connection of an automatic fill valve.

2. Install a suitable back flow preventer between the automatic fill valve and the cold water supply.

3. Install shut off valves where required.

 NOTE: The boiler, when used in connection with a refrigeration system, must be installed so the chilled medium is piped in parallel with the boiler with appropriate valves to prevent the chilled medium from entering the boiler.

The boiler piping system of a hot water heating boiler connected to heating coils located in air handling appliances where they may be exposed to refrigerated air circulation must be equipped with flow control valves or other automatic means to prevent gravity circulation of the boiler water during the cooling cycle.

A boiler installed above radiation level, or as required by the authority having jurisdiction, must be provided with a low water cutoff device either as a part of the boiler or at the time of boiler installation.

4A.3 Water Flow Requirements — Boiler

A hydronic heating (closed loop) application recirculates the same fluid in the piping system. As a result, no new minerals or oxygen is introduced into the system. To ensure a proper operating temperature leading to long boiler life, a flow rate has been established based on the fluid temperature rise for this specific size boiler.

Pump-mounted boilers can be ordered for use in primary secondary piping systems. The pumps used are sized for the headloss through the heater, plus 30
Increase the head loss requirement by 20%.

IMPORTANT NOTES: Different glycol products may provide varying degrees of protection. Glycol products must be maintained properly in a heating system, or they may become ineffective. Consult the glycol specifications, or the glycol manufacturer, for information about specific products, maintenance of solutions, and set up according to your particular conditions.

SECTION 4B.
Water Connections — Rheos Water Heater

4B.1 Water System Piping — Water Heater

Hot water piping should be supported by suitable hangers or floor stands. Do not support piping with this appliance. Due to expansion and contraction of copper pipe, consideration should be given to the type of hangers used. Rigid hangers may transmit noise through the system resulting from the piping sliding in the hangers. It is recommended that padding be used when rigid hangers are installed.

The Rheos can be used with several different types of readily available storage tanks. A pump draws water from the storage tank and pumps the water through the heater and back into the tank. Pump-mounted units have a circulating pump built into the water heater.

Pipe the outlet from the heater’s relief valve such that any discharge from the relief valve will be conducted to a suitable place for disposal when relief occurs. Do not reduce line size or install any valves in this line. The line must be installed to allow complete drainage of both the valve and the line.

Suggested piping diagrams are shown in Figures 9, 10, 11 and 12. These diagrams are meant only as a guide. Components required by local codes must be properly installed.

The minimum inlet water temperature for the Rheos is 130°F (54°C) to avoid condensing on the copper coils.

4B.2 Hot Water Supply Piping — Water Heater

Follow the tank manufacturer’s guidelines for completion of the hot water system connections.

If the Rheos water heater is installed in a closed water supply system, such as one having a backflow preventer in the cold water supply line, the relief valve may discharge periodically, due to thermal expansion. Means (such as a properly-sized expansion tank) shall be provided to control thermal expansion. Contact the water supplier or local plumbing inspector on how to control this situation.

4B.3 Water Flow Requirements — Water Heater

In a water heating application (an open system), new water is constantly being introduced. With the new water comes a fresh supply of minerals that can be deposited on the unit’s heat exchanger. This is commonly known as scaling. The amount of minerals will depend upon the hardness of the water. Water can also be aggressive, and can erode metals, including copper, if the water is moved too quickly. The water flow requirements for the Rheos water heater are based upon the hardness of the water. The water flow is kept high enough to prevent scaling, but low enough to prevent tube erosion. For extremely soft or hard water, cupro-nickel tubes are available. Contact a Laars Representative if you have questions or concerns about water quality.

Pump-mounted water heaters can be ordered with standard pumps for soft or normal water or with pumps for hard water. The pumps used are sized for the headloss through the heater, plus 30 feet (9.1m) of full-sized piping and a normal number of fittings.

Table 9 specifies water flow rates for water heaters, which will enable the user to size a pump. The headloss shown is for the heater only, and the user will need to add the headloss of the piping system to properly size the pump.

4B.4 Combined Water (potable) Heating and Space Heating

NOTE: These systems are not allowed in the Commonwealth of Massachusetts.

Piping and components connected to this water heater for the space heating application shall be suitable for use with potable water.

Toxic chemicals, such as used for boiler treatment, shall not be introduced into the potable water used for space heating.

This water heater when used to supply potable water shall not be connected to any heating system

or component(s) previously used with a non-potable water heating appliance.

When the system requires water for heating at temperatures higher than required for other uses, an anti-scald mixing or tempering valve shall be installed to temper the water for those uses in order to reduce scald hazard potential.

4B.5 Freeze Protection – Water Heater

Although Rheos water heaters are design-certified for outdoor installations, such installations are not recommended in areas subject to freezing temperatures unless proper precautions are taken.

Power outage, interruption of gas supply, failure of system components, activation of safety devices, etc., may prevent a heater from firing. Any time a heater is subjected to freezing conditions, and the heater is not able to fire, and/or the water is not able to circulate, there is a risk of freezing in the heater or in the pipes in the system. When water freezes, it expands. This can result in bursting of pipes in the system, or damage to the heater, which could result in leaking or flooding conditions.

Figure 14. Proportional Control.
SECTION 5.
Electrical Connections

WARNING
The appliance must be electrically grounded in accordance with the requirements of the authority having jurisdiction or, in the absence of such requirements, with the latest edition of the National Electrical Code, ANSI/NFPA 70, in the U.S. and with latest edition of CSA C22.1 Canadian Electrical Code, Part 1, in Canada. Do not rely on the gas or water piping to ground the metal parts of the boiler. Plastic pipe or dielectric unions may isolate the boiler electrically. Service and maintenance personnel, who work on or around the boiler, may be standing on wet floors and could be electrocuted by an ungrounded boiler. Electrocution can result in severe injury or death.

Single pole switches, including those of safety controls and protective devices must not be wired in a grounded line.

All electrical connections are made in the field wiring box that is located inside the appliance.

NOTE: All internal electrical components have been prewired. No attempt should be made to connect electrical wires to any other location except the wiring box.

Wiring connections are shown in Figures 18 through 33.

5.1 Main Power
Connect a properly sized and fused, 120-volt supply to the main power switch (hot leg is connected directly to switch). Neutral leg is connected directly to the white wire. Ground wire can be connected to the grounding screw in the box or on the switch.

5.2 Pump Connections
The pump time delay relay will call the pump to be energized upon a call for heat, and will keep the pump energized for a delay period after the call for heat has ended. The delay period is adjustable from 0.1 to 10 minutes.

Pump-mounted Rheos units have pumps that are wired at the factory to the pump time delay through a relay. Wiring to a separate 230V single phase circuit, per the wiring diagrams in Figures 18 through 33 is necessary.

Rheos units without the factory-mounted pump also have the pump time delay relay. A 120V single phase pump, which is no larger than 1hP, or 230V single phase pump no higher than 3/4hP, can be wired directly to pump time delay relay, as shown in the unit’s wiring diagram (120V hot connection on the pump to terminal 2 on the pump delay relay, and 120V neutral to the 120V neutral circuit of the unit.)

If the pump is 3-phase, higher voltage than 120V, or higher horsepower than 1hP, the pump’s starter or a separate relay can be connected to the unit’s pump time delay relay, and the pump can be driven indirectly.

Contact the factory if there are questions about connecting a pump to the Rheos’ pump time delay relay.

5.3 Temperature Control — Boiler
Connect boiler T-T wires to isolated contacts on zone valves, circulator relays, sequencing controls (multiple appliance applications) or other temperature controlled devices. The Rheos boiler temperature control measures temperature on the boiler inlet. Set the temperature control such that the setpoint plus the boiler temperature rise equals the desired boiler outlet temperature. Also set the manual reset high limit 20°F above the outlet temperature to avoid nuisance lockouts.

Example, Imperial units: If the desired outlet temperature is 180°F, and the boiler temperature rise is 25°F, then set the boiler temperature at 155°F (180°F – 25°F). Lastly, set the manual reset high limit to 200°F (180°F + 20°F).

Example, Metric units: If the desired outlet temperature is 82°C, and the boiler temperature rise is 14°C, then set the boiler temperature at 68°C (82°C-14°C). Lastly, set the manual reset high limit to 93°C (82°C+11°C).

5.4 Temperature Control — Water Heater
5.4.1 Remote Water Heater Temperature Control
The Rheos water heater can be used with a field-supplied tank aquastat, sequencing control, or other temperature control device, which will call the unit for heat when the temperature goes below the controller’s setpoint. For the most efficient setting, set the tank temperature at the lowest possible setting for adequate hot water in the application.

<table>
<thead>
<tr>
<th>Caution</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the tank temperature control is set too high, a potential for hot water scalding may exist.</td>
</tr>
</tbody>
</table>

After a setting has been chosen for the tank temperature control, set the heater temperature control 10°F (6°C) higher. The heater’s temperature control senses the inlet water temperature to the heater. The heater’s manual reset high limit senses heater outlet temperature, and should be set 20°F (11°C) above the outlet temperature to avoid nuisance lockouts.

Example, Imperial units: If the tank temperature is set to 140°F, set the heater’s temperature control to 150°F (140°F+10°F). Further, if the temperature rise
through the heater is 25°F, the outlet temperature will be 175°F (150°F + 25°F). Therefore, set the manual reset high limit to 195°F (175°F + 20°F).

Example, Metric units: If the tank temperature is set to 60°C, set the heater’s temperature control to 66°C (60°C + 6°C). Further, if the temperature rise through the heater is 15°C, the outlet temperature will be 81°C (66°C + 15°C). Therefore, set the manual reset high limit to 92°C (81°C + 11°C).

5.4.2 Internal Water Heater Temperature Control

When an external control is not used, the circulator between the heater and the storage tank must run continuously, so that the heater’s temperature control can detect and control the water temperature in the storage tank. The Rheos water heater’s temperature control is adjusted to its lowest temperature position when shipped from the factory. This is the preferred starting point for setting the temperature control. Set the manual reset high limit 20°F (11°C) plus heater temperature rise above the temperature control’s setting.

Example, Imperial units: If the heater’s temperature control is set to 130°F, and the temperature rise through the heater is 25°F, the outlet temperature will be 155°F. Set the manual reset high limit to 175°F.

Example, Metric units: If the heater’s temperature control is set to 55°C, and the temperature rise through the heater is 14°C, the outlet temperature will be 69°C. Set the manual reset high limit to 80°C.

![Control Parameter Graph](image)

Figure 15. Control Parameter Graph.

Caution

Should overheating occur or the gas supply fail to shut off, turn off the manual gas control valve to the appliance.

5.5 Temperature Control Features

The Rheos temperature control is versatile and will allow the user to better match the modulating control to the application. Settings that can be changed are temperature setpoint, differential, offset, throttling range, and minimum output.

The temperature setpoint is the setting at which the unit will shut off, having satisfied the controller’s call for heat.

The differential determines how far the temperature in the Rheos can fall before energizing again.

The offset determines where the throttling range begins.

The throttling range is the temperature range through which the unit will modulate from minimum to maximum firing rate.

Important Note: These control parameters work together. Therefore, setting one parameter may have an affect on another. Figures 15, 16 and 17 show the relationships between these settings. Figure 15 follows the examples that are shown in the following sections, and Figures 16 and 17 are examples of how the parameters can interfere with each other.
Figure 16. Control Parameter Possible Interference.

Note: Line with arrows represents what happens after the Rheos achieves 180°F/82°C during a call for heat. It will cool to 170°F/77°C, and will re-energize at less than full fire. The Rheos will be at full fire only if the temperature goes below 165°F/74°C.

Figure 17. Control Parameter Possible Interference.

Note: As shown, if the offset is set the same as the differential, the throttling range is outside the differential range. The only time the Rheos will be above 50% fire is when the temperature drops below the setpoint's differential. Line with arrow represents what happens after the Rheos achieves 180°F/82°C during a call for heat. It will cool to 165°F/74°C, and will re-energize at 50% of fire.
5.5.1 Temperature Setpoint
The temperature setpoint is the point at which the temperature control relay will be de-energized and the unit’s call for heat will end. The temperature setpoint is adjusted with the setpoint dial on the A350 control (see Figure 13). The temperature control’s sensor is in the inlet of the unit.

5.5.2 Differential Setting
The differential is the difference in temperature settings when the temperature control’s relay is energized and de-energized. For instance, if the temperature setpoint is 180°F (82°C) and the differential is 20°F (11°C), the temperature control will call the unit to energize at 160°F (71°C). (The differential is the setpoint minus the differential setting) The call for heat will end when the unit reaches its setpoint of 180°F (82°C). The Rheos differential is adjustable from 1°F to 30°F (1°C to 17°C). In general, the differential setting for a water heater system will be low, so that when a storage tank is drawing down, the heater will react to sustain a minimum tank temperature. Boilers generally have higher differentials than water heaters, to minimize short cycling (see throttling range). The differential is set by removing the cover of the A350 control and adjusting the potentiometer marked “DIFF” (see Figure 13).

5.5.3 Offset
The offset determines the temperature below the controller’s setpoint where the throttling range begins. It offsets the throttling range.
For instance, if the setpoint is 180°F (82°C) and the offset is 5°F (3°C), then the unit’s throttling range will begin at 175°F (79°C). Between 175°F (79°C) and 180°F (82°C), the Rheos will be in low fire.
The offset can be adjusted between 0°F and 30°F (0°C and 17°C) by removing the cover of the S350P control and adjusting the Offset dial (see Figure 14).

5.5.4 Throttling Range
The throttling range allows the Rheos to match the BTU demands of varying systems, by allowing the user to choose the temperature range through which the unit will modulate. This will tell the controller how fast to respond to a change in temperature. A small throttling range keeps the unit in high fire more, and quickens the response of the system. A larger throttling range allows the Rheos to spread its modulating range over a larger temperature range.

Example, Imperial units: Using a temperature setpoint of 180°F, with a 20°F differential, a 5°F offset, and a throttling range of 10°F, the unit will come on at 160°F and shut off at 180°F. The offset will set the top of the throttling range 5°F under the setpoint, which is 175°F in this example. Therefore, the throttling range will cause the Rheos to modulate between 50% and 100% of full fire between 175°F and 165°F. Between 175°F and 180°F, the unit will remain at low fire. Between 160°F and 165°F, the unit will be at full fire.

Example, Metric units: Using a temperature setpoint of 82°C, with a 11°C differential, a 3°C offset, and a throttling range of 5°C, the unit will come on at 71°C and shut off at 82°C. The offset will set the top of the throttling range 3°C under the setpoint, which is 79°C in this example. Therefore, the throttling range will cause the Rheos to modulate between 50% and 100% of full fire between 79°C and 74°C. Between 79°C and 82°C, the unit will remain at low fire. Between 71°C and 74°C, the unit will be at full fire.
The throttling range is adjustable between 2°F and 30°F (1°C to 17°C). The range can be set by removing the cover of the S350P control and adjusting the “THROT RANGE” dial (see Figure 14).

5.5.5 Minimum Output Setting
The minimum output setting of the controller is 0% of full fire. However, the minimum output of the Rheos is limited to 50% of full fire by the fan speed controller, to ensure proper operation of the Rheos. If a minimum desired output is higher than 50%, the setting can be adjusted up by removing the cover of the S350P control and adjusting the Min Output dial (see Figure 14). Turning the dial clockwise increases the minimum output. In most cases, this setting should be left as shipped from the factory, with the arrow pointing to the 5 o’clock position.

5.5.6 Integration Constant
The proportional control used on the Rheos has internal circuitry that helps to minimize overshoot that can sometimes be associated with proportional plus integral (PI) controls. There are three field-selectable integration constants (slow, medium and fast), and an off position on the proportional control, which are selected with the dipswitches on the control (see Figure 14). In most cases, this setting will not need to be changed

Off: Switch 1 to ON position and all others to OFF. Setting the control to the “Off” position puts the control into proportional only operation. This is not a recommended setting for the Rheos.
Slow: Switch 2 to ON position and all others to OFF. This is the slowest integration constant. It allows the Rheos the most time to reach its setpoint. In most cases, this is too slow for Rheos installations.
Medium: Switch 3 to ON position and all others to OFF. The integration constant is set to “Medium” at the factory, and in most cases, will not need to be changed. This setting will be the best suited to most Rheos installations.
Fast: Switch 4 to ON position and all others to OFF. If the rate of system recovery to setpoint is...
sluggish with the control set to medium, the “Fast” setting may be an improvement. The “Fast” setting will only be used when the rate of change at the sensor is very rapid. In most cases, this setting is too fast for the Rheos.

5.6 External Control Connections

Rheos units are built with a selector switch and a terminal strip to allow the Rheos to receive a 0-10VDC signal from an external controller (such as a building automation system or multiple boiler control).

When the selector switch is in the “Rheos Control” position, the Rheos will be modulated by the unit’s factory-mounted modulating control.

When the switch is in the “External Control” position, the unit look for a 0-10VDC signal from an external (field-supplied) controller.

To interlock the external boiler control with the Rheos, the call for heat signal MUST be connected to the field interlock terminal strip on the Rheos (shown in Figure 18). Be sure to remove the factory-installed jumper between the field interlock terminals. The 0-10VDC modulating signal MUST be connected to external control terminal strip, located to the right of, and behind the front panel. The terminal strip is labeled “0-10VDC +” and 0-10VDC –” to indicate which terminal received the hot signal (+) and which terminal receives the common signal (-) from the controller.

The Rheos unit will modulate between 4.7V and 10V (for 50% and 100%, respectively). Anything less than 4.7 volts will result in 50% of full fire.

For the external control to modulate the Rheos, the selector switch on the front panel must be in the “External Control” position.

Important Note: DO NOT MAKE/BREAK RHEOS LINE VOLTAGE TO SIGNAL CALL FOR HEAT. A “call for heat / end call for heat” MUST be connected to the field interlock terminals. The Rheos does not recognize 0 volts as a signal to shut off. If the call for heat is not connected between the field interlock terminals, the Rheos will remain in low fire when it sees 0 volts as a modulating signal.

5.7 Wiring Diagrams

Caution

Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation. Verify proper operation after servicing.
Figure 19. Wiring Diagram, Models 1600, 2000 and 2400, Standard and Codes A, C, D, F and G.

Notes:
1. If any of the original wire supplied with the appliance must be replaced, it must be replaced with type NMB wire or its equivalent.
2. Pump and pump relay are field-supplied. Pump time delay contacts are rated to switch a maximum of 1 HP at 115V.
3. The * denotes an optional component.
4. Option parts A and D are a built-in place of the alarm contact relay.
5. One pump circuit for the pump requirements. Wiring depicted shows a single phase pump. Three-phase pumps are acceptable when wired properly.
Figure 20. Wiring Diagram, Model 1200, Codes B and E.
Figure 21. Wiring Diagram, Models 1600, 2000 and 2400, Codes B and E.
Figure 22. Wiring Diagram, Model 1200, Pump-Mounted, Standard and Codes A, C, D, F and G.
Figure 23. Wiring Diagram, Models 1600, 2000 and 2400, Pump-Mounted, Standard and Codes A, C, D, F and G.
Figure 24. Wiring Diagram, Model 1200, Pump-Mounted, Codes B and E.
Figure 25. Wiring Diagram, Models 1600, 2000 and 2400, Pump-Mounted, Codes B and E.
Figure 26. Wiring Schematic, Model 1200, Standard and Codes A, C, D, F and G.

Figure 27. Wiring Schematic, Models 1600, 2000 and 2400, Standard and Codes A, C, D, F and G.
Figure 28. Wiring Schematic, Model 1200, Codes B and E.

Figure 29. Wiring Schematic, Models 1600, 2000 and 2400, Codes B and E.
Figure 30. Wiring Schematic, Model 1200, Pump-Mounted, Standard and Codes A, C, D, F and G.

Figure 31. Wiring Schematic, Models 1600, 2000 and 2400, Pump-Mounted Standard and Codes A, C, D, F and G.
Figure 32. Wiring Schematic, Model 1200, Pump-Mounted, Codes B and E.

Figure 33. Wiring Schematic, Models 1600, 2000 and 2400, Pump-Mounted Codes B and E.
SECTION 6.
Operating Instructions

6.1 Filling the Boiler System
1. Ensure the system is fully connected. Close all bleeding devices and open make-up water valve. Allow system to fill slowly.
2. If make-up water pump is employed, adjust pressure switch on pumping system to provide a minimum of 12 psi (81.8 kPa) at the highest point in the heating loop.
3. If a water pressure regulator is provided on the make-up water line, adjust the pressure regulator to provide at least 12 psi (81.8 kPa) at the highest point in the heating loop.
4. Open bleeding devices on all radiation units at the high points in the piping throughout the system, unless automatic air bleeders are provided at such points.
5. Run system circulating pump for a minimum of 30 minutes with the boiler shut off.
6. Open all strainers in the circulating system, check flow switch operation, and check for debris. If debris is present, clean out to ensure proper circulation.
7. Recheck all air bleeders as described in Step 4.
8. Check liquid level in expansion tank. With the system full of water and under normal operating pressure, the level of water in the expansion tank should not exceed ¼ of the total, with the balance filled with air.
9. Start up boiler according the procedure in this manual. Operate the entire system, including the pump, boiler, and radiation units for one (1) hour.
10. Recheck the water level in the expansion tank. If the water level exceeds ¼ of the volume of the expansion tank, open the tank drain, and drain to that level.
11. Shut down the entire system and vent all radiation units and high points in the system piping, as described in Step 4.
12. Close make-up water valve and check strainer in pressure reducing valve for sediment or debris from the make-up water line. Reopen make-up water valve.
13. Check gauge for correct water pressure and also check water level in the system. If the height indicated above the boiler insures that water is at the highest point in the circulating loop, then the system is ready for operation.
14. Refer to local codes and the make-up water valve manufacturer's instructions as to whether the make-up water valve should be left open or closed.
15. After placing the unit in operation, the ignition system safety shutoff device must be tested. First, shut off the manual gas valve, and call the unit for heat. Main gas terminals will be energized, attempting to light, for seven (7) seconds, and then will de-energize. The unit will go into lockout mode. Second, turn the power off, press the manual reset button shown in detail A of Figure 30, open the manual gas valve and allow the unit to light. While the unit is operating, close the manual gas valve and ensure that power to the main gas valve has been cut.
16. Within three (3) days of start-up, recheck all air bleeders and the expansion tank as described in Steps 4 and 8 above.

Important: The installer is responsible for identifying to the owner/operator the location of all emergency shutoff devices.

WARNING
Do not use this appliance if any part has been under water. Immediately call a qualified service technician to inspect the appliance and to replace any part of the control system and any gas control that may have been under water.

6.2 Operating the Burner and Set Up
The Rheos modulating appliance utilizes an advanced, state-of-the-art design. The setup must be checked before the unit is put in operation. Problems such as failure to start, rough ignition, strong exhaust odors, etc. can be due to improper setup. Damage to the boiler resulting from improper setup is not covered by the limited warranty.

REQUIRED TOOLS:
Differential pressure gauge capable of reading negative 0.01 inches W.C. (0.002kPa).
1. Using this manual, make sure the installation is complete and fully in compliance with the instructions.
2. Determine that the appliance and system are filled with water and all air has been bled from both. Open all valves.
3. Observe all warnings on the Operating Instructions label and turn on gas and electrical power to appliance.
4. There is a gas/air test panel to the left of the control panel, at the front of the unit (see Figure 34). Ensure that all four valves on the test panel are closed (see Figure 35).
5. Remove the two plugs from the + and – ports of the air orifice taps, thread hose barbs into the 1/8” NPT connections, and attach the manometer pressure lines to the barbs. Be sure all connections are gas tight.
6. Switch on the appliance power switch located on the front of the unit.
7. The Rheos will enter the start sequence. The blower and pump come on for pre-purge, then the ignitor warm-up sequence starts and after all safety devices are verified, the gas valve opens. If ignition doesn’t occur, check that there is proper gas supply. Wait 5 minutes and start the unit again.
8. Open air orifice test port valves. Check air orifice differential at full fire, and make note of the differential.
9. Switch the Rheos off.
10. Close air orifice valves, remove the barbs and replace the plugs. Make sure the connections are gas tight.
11. Remove the two plugs from the + and – ports of the gas orifice taps, thread hose barbs into the 1/8" NPT connections, and attach the manometer pressure lines to the barbs. Be sure all connections are gas tight.
12. Switch on the appliance power switch located on the front of the unit.
13. The Rheos will enter the start sequence. The blower and pump come on for pre-purge, then the ignitor warm-up sequence starts and after all safety devices are verified, the gas valve opens.
15. Close gas orifice valves, remove the barbs and replace the plugs. Make sure the connections are gas tight.
16. If gas and air orifice differentials match what is shown in Table 10, and do not differ from each other by more than 0.1" w.c., the unit is properly set up. If not, consult the factory.
17. After placing the appliance in operation, the Burner Safety Shutoff Device must be tested. To test:
 (a) Close gas shutoff valve with burner operating.
 (b) The flame will go out and blower will continue to run for the post purge cycle. One additional attempt to light will follow including pre-purge, ignitor on, valve/flame on and post purge. Ignition will not occur as the gas is off. The ignition control will lockout, and will have to be reset before the unit will operate.
 (c) Open gas shutoff valve. Restart the appliance. The ignition sequence will start again and the burner will start. The appliance will return to its previous mode of operation.
SECTION 7. Maintenance

7.1 System Maintenance
1. Lubricate the system water-circulating pump, if required, per the instructions on the pump.
2. If a strainer is employed in a pressure reducing valve or the piping, clean it every six months.
3. Inspect the venting system for obstruction or leakage at least once a year. Periodically clean the screens in the vent terminal and combustion air terminal (when used).
4. Keep the appliance area clear and free from combustible materials, gasoline, and other flammable vapors and liquids.
5. If the appliance is not going to be used for extended periods in locations where freezing normally occurs, it should be isolated from the system and completely drained of all water.
6. Low water cutoffs, if installed, should be checked every 6 months. Float type low water cutoff should be flushed periodically.
7. Inspect and clean the condensate collection and disposal system yearly.
8. When a means is provided to neutralize condensate, ensure that the condensate is being neutralized properly.
9. Inspect flue passages, and clean with brushes/vacuums, if necessary. Sooting in flue passages indicates improper combustion. Determine the cause and correct.
10. Inspect the vent system and air intake system, and ensure that all joints are sealed properly. If joints need to be resealed, completely remove existing sealing material, and clean with alcohol. Apply new sealing material, and re-assemble.

7.2 Appliance Maintenance and Component Description

Only genuine Laars replacement parts should be used.

![Caution]
Should any odor of gas be detected, or if the gas burner does not appear to be functioning in a normal manner, close main shutoff valve, do not shut off switch, and contact your heating contractor, gas company, or factory representative.

![WARNING]
Disconnect all power to the appliance before attempting any service to the appliance. Contact with electricity can result in severe injury or death.

Table 10. Air and Gas Orifice Differentials at Full Fire.

<table>
<thead>
<tr>
<th>Gas Type</th>
<th>Air Orifice Differential</th>
<th>Gas Orifice Differential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>4.0 to 4.5” W.C. (1.0 to 1.1kPa)</td>
<td>4.0 to 4.5” W.C. (1.0 to 1.1kPa)</td>
</tr>
<tr>
<td>Propane</td>
<td>4.5 to 5.0” W.C. (1.1 to 1.2kPa)</td>
<td>4.5 to 5.0” W.C. (1.1 to 1.2kPa)</td>
</tr>
</tbody>
</table>

Note: Long runs of vent or combustion air piping may reduce the air and gas differential pressures. This is acceptable, as long as the pressures are within 0.1” (0.025kPa) w.c. of each other.

6.3 Shutting Down the Rheos
1. Switch off the main electrical disconnect switch.
2. Close all manual gas valves.
3. If freezing is anticipated, drain the Rheos and be sure to also protect building piping from freezing.

This step to be performed by a qualified service person.

6.4 To Restart the Rheos
If drained, follow Section 6.1 in this manual for properfilling and purging.
1. Switch off the main electrical disconnect switch.
2. Close all manual gas valves.
3. **WAIT FIVE (5) MINUTES.**
4. Set the aquastat or thermostat to its lowest setting.
5. Open all manual gas valves.
6. Reset all safety switches (pressure switch, manual reset high limit, etc).
7. Set the temperature controller to the desired temperature setting and switch on electrical power.
8. Burner will go through a prepurge period and ignitor warm-up period, followed by ignition.

![Caution]
Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation. Verify proper operation after servicing.
See Figures 36, 37 and 38 for location of gas train and control components.

The gas and electric controls on the appliance are engineered for long life and dependable operation, but the safety of the equipment depends on their proper functioning. It is strongly recommended that a qualified service technician inspect the basic items listed below every year.

a. Ignition control
b. Water temperature control
c. Automatic gas valve
d. Pressure switches
e. Blower

7.2.1 Burner
Check the burner for debris. Remove the fan assembly to access the burner. Remove the 6 nuts, which hold the burner in place. Pull burner up and out. Clean burner, if necessary, by blowing compressed air from the outside of the burner into the center of the burner, and wipe the inside of the burner clean with glass cleaner. A dirty burner may be an indication of improper combustion or dirty combustion air. Determine the cause, and correct. Always replace the burner gasket when replacing the burner.

7.2.2 Filter
The filter used in the Rheos is washable with an 83% arrestance. Since the filter is washable, it will only need replacement in very rare cases. If filter replacement is needed, it should only be replaced with factory parts. To access the filter, remove the unit’s front panel. Disengage latch on top of filter box and remove the filter box cover. Inspect the air filter. If there is debris on the air filter, remove it from the filter box, and wash it with mild soap and water. Ensure that the filter is completely dry before re-installing, in reverse order.

7.2.3 Modulating Gas Valve
The modulating gas valve consists of a valve body and a pressure regulating electro-hydraulic actuator. It provides the air/gas ratio control for the unit. It is designed to operate with supply pressures of 4-13 inches w.c. (1.0 to 3.2 kPa).

To remove the valve actuator, shut off 120-volt power and the gas shutoff valve. Remove the front panel from the unit. Label the four pressure tubes that are connected to the valve actuator, to ensure that they will be replaced correctly. Remove the four tubes from the barb connectors. Disconnect the 110-volt wires from the actuator. Remove the valve actuator by taking out the four screws, and pulling the actuator out. Re-install in reverse order. Turn on gas shutoff valve and 120 volt power and check appliance operation and tightness of gas valve connections.

The gas valve body will rarely have to be removed. If there is a valve problem, and it has been determined the actuator is working properly, the gas valve body may need to be replaced. To remove the gas valve body, shut off 120-volt power and the gas shutoff valve. Remove the valve body from the gas train. After the valve has been removed, replace with a new valve in the reverse order. Turn on gas shutoff valve and 120 volt power and check appliance operation and tightness of gas valve connections.

7.2.4 Safety Gas Valve
The safety gas valve is a 24-volt diaphragm valve. It is designed to operate with supply pressures of 4-14 inches w.c. (1.0 to 3.4 kPa). To remove the gas valve, shut off 120-volt power. Shut off the main gas supply to the unit. Disconnect the gas supply piping from the back of the unit. Disconnect the electrical wires from the valve, and unscrew the gas valve from the gas train. Re-assemble in reverse order. A bleed line from the diaphragm type automatic valve shall be vented per local code requirements.

7.2.5 Manual Reset High Limit Control
The high limit switch is manual reset switch with an adjustable set point, up to 240°F (116°C) on boiler models and 200°F (93°C) water heater models. To replace the switch, shut off the 120-volt power to the appliance. Remove the cover from the switch to access the mounting screws. Remove the screws, and pull the switch off the control panel. Replace in reverse order.

7.2.6 Temperature Control
The temperature control consists of an adjustable electronic control and digital display module. To replace the control or the display, shut off the 120-volt power to the appliance. Remove the cover from the control panel, and remove the screws from the DIN rail clip, to which the controls are mounted. Pull the electrical connector from the controller. Slide the controllers from the DIN rail clip. Replace in reverse order.

7.2.7 Ignition Control
The ignition control ensures the proved interrupted-type ignition system. It controls the hot surface ignitor and proves that the flame signal is appropriate for powering the gas valves. It also controls the blower’s pre-purge and post-purge. To replace the control, shut off the 120-volt power to the appliance. Remove the cover from the control panel. Remove the electrical connectors from the ignition control. Take out the controller’s mounting screws, and pull the controller out. Replace in reverse order.
7.2.8 Ignitor / Flame Sensor Assembly

The ignitor is a 110v “Hot Surface” type. It is energized whenever there is a call for heat and switched off when ignition is established and the flame has been sensed. To replace the ignitor, shut off the 120-volt power to the appliance, disconnect the Molex connector, remove the two mounting screws on the ignitor flange, and pull the ignitor out. Always install a new ignitor gasket with the replacement ignitor.

7.2.9 Transformers

There are three transformers in the Rheos unit. One is 24v to 110v, the second is 110v to 24v, and the third is 110v to 220v. Be sure to replace the transformers with factory parts. These transformers are not capable of supplying control voltage for external devices such as zone valves, which must have their own separate power supply. Should a transformer need replacing, shut off the 120-volt power. Unplug the transformer wires, remove the mounting screws and remove the transformer. Replace transformer in the reverse order.

7.2.10 Blower

The combustion air blower is a high-pressure centrifugal blower with a variable speed motor. The speed of the motor is determined by the control logic. If a blower change is required, turn off the 120-volt power and gas supply to the unit. Take the front panel, the two side access panels, and the top jacket panel off. (If there is enough clearance on the side, the top may not have to be removed.) Disconnect the gas union between the blower and gas valves. Disconnect the filter box assembly (at the air transition) from the blower (six 8 mm bolts). Disconnect the two Molex electrical connectors from the top right of the blower. Remove the four nuts from the blower flange, and pull the blower out. Replace blower in reverse order, ensuring that all joints are made correctly and sealed. After replacement, ensure that the unit operates properly, by following the set-up procedure in this manual.

7.2.11 Flow Switch

The Rheos uses a paddle-type flow switch to ensure that the unit has water flow before ignition is allowed.

7.2.12 Heat Exchanger Coil

Black carbon soot buildup on the external surfaces of the heat exchanger is caused by one or more of the following: incomplete combustion, combustion air problems, venting problems and heater short cycling. Soot buildup or other debris on the heat exchanger may restrict the flue passages.

If black carbon soot buildup is suspected, disconnect electrical supply to the unit, and turn off the gas supply by closing the manual gas valve on the unit. Access the heat exchanger through the side access panels, and inspect the finned copper tubing using a flashlight. If there is a buildup of black carbon soot or other debris on the heat exchanger, clean per the following:

1. Disconnect the electrical supply to the unit.
2. Turn off the gas supply by closing the manual gas valve on the heater.
3. Disconnect and remove the wires, conduit and sensors from all components that are attached to the inlet/outlet header.
4. Isolate the heat exchanger from the water supply.
5. Drain the heat exchanger from the drain located on the bottom of the heat exchanger.
6. Disconnect the header flanges from the inlet and outlet.
7. Remove the heat exchanger from the unit.

NOTE: The heat exchangers are heavy and may require two people to remove to avoid personal injury.
8. Clean the heat exchanger: A light accumulation of soot or corrosion on the outside of the heat exchanger can be easily removed. Use a wire brush to remove loose soot and scale from the heat exchanger. Do not use water or compressed air for cleaning.
9. NOTE: While the heat exchanger is out of the unit, inspect the firewall refractory insulation blocks for cracks, wear and breakage. Replace if necessary.
10. Inspect the inside of the copper tubes for scale buildup. Scale can build up on the inner surface of the heat exchanger tubes, which can restrict water flow. If the tubes show signs of scaling, clean the internal surface. Laars offers a tube cleaning kit part number R2000700.
11. Reassemble in the reverse order.

NOTE: The Warranty does not cover damage caused by lack of required maintenance, lack of water flow, or improper operating practices.
7.2.13 Normally Open Vent Valve

Some Rheos models provide a normally open vent valve for installations with IRI code requirements. The valve opens when power is removed from the safety valves. And the valve closes when the safety valves are powered. See sections 3.1 Item #4 for installation instructions.

7.2.14 Motorized Safety Valve

Control packs B and E have an additional motorized safety valve. This valve is powered open at the same time as the safety valve. To remove the valve actuator, shut off the 120V power and the gas shutoff valve. Remove the right side, or front panel. Disconnect the 120V wires from the actuator. Remove the valve actuator by taking out the four screws, and pulling the actuator out. Re-install in reverse order. Turn on gas shutoff valve and 120V power and check appliance operation and tightness of gas valve connections.

The gas valve body will rarely have to be removed. If there is a valve problem, and it has been
determined the actuator is working properly, the gas valve body may need to be replaced. To remove the gas valve body, shut off 120V power and the gas shutoff valve. Remove the right side and front panels. Remove the valve actuator. Unscrew the valve body from the gas train. After the valve has been removed, replace with a new valve in reverse order. Turn on gas shutoff valve and 120V power and check appliance operation and tightness of gas valve connections.

7.2.15 Gas Pressure Switches
The high and low gas pressure switches are 24V manual reset switches that act to cut power to the gas valves if the gas pressure is too low or too high for proper operation. The gas pressure switches used are integrally vent limited, and do not require venting to atmosphere. To remove a switch, remove the screw on the plastic housing and pull the clear cover off. Disconnect the two wires from the screw terminals. Twist the switch off the pipe nipple. Reassemble in reverse order. For natural gas, set the low gas pressure switch to 3" w.c. For propane, set the low gas pressure switch to 5" w.c. For natural and propane, set the high gas pressure switch to 14".

Figure 38. Control Panel.
SECTION 8.
Trouble Shooting

8.1 Sequence of Operation

The Rheos appliance is a cold start appliance that should start only on a call for heat from a tank aquastat, room thermostat, zone valve end switch or other space temperature control device.

1. Upon a call for heat,
 (a) The internal pump will start. (Pump is optionally mounted on unit.)
 (b) The blower will begin a 15 second pre-purge.

2. Following the prepurge cycle the hot surface ignitor will heat and will begin a 7 second trial for ignition. The unit is allowed three attempts for ignition.

3. The gas valve will then be energized and low-fire (50% of full fire) ignition will occur. The unit will remain in a low-fire start-up period for 15 seconds.

4. After the low-fire start time is over, the unit will be in normal operation firing rate and will modulate based on the heating load via the temperature controller settings and readings.

5. When the call for heat is complete, or the unit reaches its setpoint temperature, the gas valve will close, and the fan will continue to run for its 30 second post-purge. If a pump time delay is used, the pump will continue to run for the specified amount of time (adjustable from 0.1 to 10 minutes).

8.2 Resolving Lockouts

There are many causes of lockouts. The three most common causes are: (1) inadequate gas supply, (2) poor combustion, (3) ignitor failure (4) combustion air.

1. Inadequate gas supply: Before proceeding, ensure that the gas supply has not been shut off or the LP tank (LP boilers) is not empty. Then, restart the boiler and observe the operational cycle. After the pre-purge time, the unit should light. If it does not, consult the factory.

2. Poor Combustion: Poor combustion should be suspected if there is a strong flue gas odor. The odor may result from an improper gas/air ratio (high or low O₂ or CO₂). If an improper gas/air ratio is suspected, consult the factory.

3. Ignitor failure: If the boiler goes through a normal start cycle but combustion does not occur, ignitor failure should be suspected. Check the ignitor by unplugging the ignitor plug and measuring the ignitor resistance. It should be 50-80 (–) ohms. If the resistance is not 50-80 ohms (Ω), replace the ignitor. If the resistance is correct, reset the boiler and check for 120 VAC at the ignitor plug during the start cycle. If there is no voltage, replace the faulty ignitor wire harness.

4. Inadequate combustion air: If the boiler goes through a normal ignition cycle, and shuts off after the blower ramps up to full speed, an abnormal restriction in the air intake or exhaust system should be suspected. Check the air filter for buildup of debris and clean filter if necessary. Inspect all exhaust venting and intake venting for blockages. Remove any blockages and inspect and replace any damaged vent sections. If the unit still continues to lockout after igniting, consult the factory.

 Once the reason for the lockout has been identified and resolved you can reset the unit by pressing the manual reset button (see Detail A in Figure 30. Control Panel).

8.3 Delayed Ignition - Possible Causes

8.3.1 High Lockup Pressure (LP Appliances) - Occurs on Start-up

High lockup pressure is the most common cause of delayed ignitions on LP fueled appliances. It may result from an improper second stage regulator selection or from a faulty regulator.

Lock up can be detected by measuring the gas supply pressure to the appliance at the inlet pressure port on the gas valve. The gas supply to the appliance must be shut off before making any connections. To check: use a water manometer or pressure gauge with a scale reading of at least 25 in. W.C. or 15 oz/in², (6.2kPa). Attach the manometer to the gas valve inlet pressure port. Turn on the gas supply. The Rheos appliance is designed to operate with supply pressures of 4-13 in. W.C. (2.3 - 7.5 oz/ in²) (0.1-3.2kPa). If the supply pressure exceeds 13 in. W.C. (7.5 oz/ in²) (3.2kPa) with the appliance off it is possible that this may be the cause of the delayed ignitions and the inlet pressure must be reset to between 4-13 in. W.C. (2.3 – 7.5 oz/in²) (0.1-3.2kPa). Restart the appliance and then switch it off. If the inlet gas pressure exceeds 13 in. W.C. (7.5 oz/ in²) (3.2kPa) after the appliance is switched off, correct the lock up problem.

8.3.2 Gas Valve Regulation

Gas valve regulation problems can also cause delayed ignitions. If gas valve regulation problems are suspected, consult the factory. Do not attempt field adjustment or repair.
8.3.3 Defective Burner - Occurs on Startup or at Burner Shutdown

A defective burner can cause a delayed ignition. If the gas supply pressure is proper, the gas valve is functioning properly, the burner should be inspected. There should be no distortion or perforations in the burner. Replace if indicated.

8.4 Short Cycling — Boiler

Because the Rheos is a modulating boiler, and its input will decrease when there is a reduction in heating load, short cycling is greatly reduced. If the heating load drops below the minimum input of the boiler for an extended period, the boiler will have a tendency to short cycle. This can be a symptom of improper control strategy or setpoints, or a load distribution problem. See Section 5.5 regarding controller setup. Contact your Laars representative to discuss possible remedies.

8.5 Short Cycling — Water Heater

Short cycling will generally occur only in combination space heating and water heating applications when the water heater is operating in the space-heating mode. Because the Rheos is a modulating water heater and its input will reduce when there is a reduction in heating load, short cycling is greatly reduced. If the heating load drops below the minimum input of the water heater for an extended period, the water heater will have a tendency to short cycle. If short cycling is frequently experienced, regardless of the control’s attempt to limit it, the heating load should be redistributed to control it. See Section 5.5 regarding controller setup.

If short cycling occurs in a water heater application, it is probably caused by undersized piping between the water heater and the storage tank or by some other factor that restricts proper water flow through the water heater. The cause should be determined and corrected.

8.6 High Gas Consumption

Appliances operating with an improper air/fuel ratio are very inefficient and consequently, have very high gas consumption. Because efficiency is high when the CO₂ is high (or O₂ is low), appliances operating with low CO₂ or high O₂ (especially LP appliances) consume more gas. Adjust the CO₂ or O₂ for optimum efficiency. If no combustion analyzing equipment (CO₂ or O₂) is available then a proper adjustment of the air/fuel ratio (CO₂ or O₂) can not be accomplished. However, by briefly sniffing the flue gases it is possible to determine if the CO₂ or O₂ is within the proper range. No significant flue gas odor should be detected when combustion is proper. A strong piercing smell indicates poor combustion and generally a lean mixture - low CO₂ or high O₂. The CO₂ should be 8 to 9% at all firing rates. Do not attempt to correct combustion. Contact factory if the CO₂ is not within this range.

SECTION 9.
Replacement Parts

Only genuine Laars replacement parts should be used.

9.1 General Information

To order or purchase parts for the Laars Rheos, contact your nearest Laars dealer or distributor. If they cannot supply you with what you need, contact Customer Service (see back cover for address, telephone and FAX numbers).
9.2 Parts List

COMBUSTION COMPONENTS

See Figure 39

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>1200</th>
<th>1600</th>
<th>2000</th>
<th>2400</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Combustion chamber assembly</td>
<td>R2010800</td>
<td>R2016300</td>
<td>R2016400</td>
<td>R2001000</td>
</tr>
<tr>
<td>2</td>
<td>Base assembly</td>
<td>R2001100</td>
<td>R2001100</td>
<td>R2001100</td>
<td>R2001100</td>
</tr>
<tr>
<td>3</td>
<td>Panel, front cover, base frame</td>
<td>R2001200</td>
<td>R2001200</td>
<td>R2001200</td>
<td>R2001200</td>
</tr>
<tr>
<td>4</td>
<td>Panel, top, combustion chamber (with insulation)</td>
<td>R2001300</td>
<td>R2001300</td>
<td>R2001300</td>
<td>R2001300</td>
</tr>
<tr>
<td>5</td>
<td>Panel, bottom, combustion chamber</td>
<td>R2001400</td>
<td>R2001400</td>
<td>R2001400</td>
<td>R2001400</td>
</tr>
<tr>
<td>6</td>
<td>Panel, left, combustion chamber</td>
<td>R2001500</td>
<td>R2001500</td>
<td>R2001500</td>
<td>R2001500</td>
</tr>
<tr>
<td>7</td>
<td>Panel, right, combustion chamber</td>
<td>R2001600</td>
<td>R2001600</td>
<td>R2001600</td>
<td>R2001600</td>
</tr>
<tr>
<td>8</td>
<td>Panel, access, combustion chamber</td>
<td>R2001700</td>
<td>R2001700</td>
<td>R2001700</td>
<td>R2001700</td>
</tr>
<tr>
<td>9</td>
<td>Support, front, fan transition</td>
<td>R2010200</td>
<td>R2010200</td>
<td>R2010200</td>
<td>R2010200</td>
</tr>
<tr>
<td>10</td>
<td>Support, rear, fan transition</td>
<td>R2010300</td>
<td>R2010300</td>
<td>R2010300</td>
<td>R2010300</td>
</tr>
<tr>
<td>11</td>
<td>Hardware kit, combustion chamber</td>
<td>R2002200</td>
<td>R2002200</td>
<td>R2002200</td>
<td>R2002200</td>
</tr>
<tr>
<td>12</td>
<td>Burner, with gaskets</td>
<td>R2013200</td>
<td>R2016500</td>
<td>R2016600</td>
<td>R2002300</td>
</tr>
<tr>
<td>13</td>
<td>Gasket kit, burner</td>
<td>R2002400</td>
<td>R2002400</td>
<td>R2002400</td>
<td>R2002400</td>
</tr>
<tr>
<td>14</td>
<td>Tile kit (top & bottom of heat exchanger w/top insulation)</td>
<td>R2002500</td>
<td>R2002500</td>
<td>R2002500</td>
<td>R2002500</td>
</tr>
<tr>
<td>15</td>
<td>Tile support w/rods</td>
<td>R2010900</td>
<td>R2016700</td>
<td>R2016800</td>
<td>R2002600</td>
</tr>
<tr>
<td>16</td>
<td>Tile support protective liner</td>
<td>R2016900</td>
<td>R2016900</td>
<td>R2016900</td>
<td>R2002700</td>
</tr>
<tr>
<td>17</td>
<td>Flue collector kit (with gaskets)</td>
<td>R2011000</td>
<td>R2011000</td>
<td>R2017000</td>
<td>R2002800</td>
</tr>
<tr>
<td>18</td>
<td>Gasket kit, flue collector</td>
<td>R2002900</td>
<td>R2002900</td>
<td>R2002900</td>
<td>R2002900</td>
</tr>
<tr>
<td>19</td>
<td>Gasket kit, combustion chamber</td>
<td>R2003000</td>
<td>R2003000</td>
<td>R2003000</td>
<td>R2003000</td>
</tr>
<tr>
<td>20</td>
<td>Heat exchanger assembly, copper</td>
<td>R2013300</td>
<td>R2017100</td>
<td>R2017200</td>
<td>R2003100</td>
</tr>
<tr>
<td>21</td>
<td>Baffle, flue</td>
<td>R2017300</td>
<td>not used</td>
<td>not used</td>
<td>not used</td>
</tr>
</tbody>
</table>

GAS TRAIN / COMBUSTION AIR COMPONENTS

See Figures 40 and 41

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>1200</th>
<th>1600</th>
<th>2000</th>
<th>2400</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Gas train assembly, standard, Nat</td>
<td>R2011100</td>
<td>R2017400</td>
<td>R2017500</td>
<td>R2003200</td>
</tr>
<tr>
<td>26</td>
<td>Gas train assembly, standard, LP Nat</td>
<td>R2011200</td>
<td>R2017600</td>
<td>R2017700</td>
<td>R2010400</td>
</tr>
<tr>
<td>27</td>
<td>Gas train assembly, control pack A, Nat</td>
<td>R2017800</td>
<td>R2017900</td>
<td>R2018000</td>
<td>R2018100</td>
</tr>
<tr>
<td>28</td>
<td>Gas train assembly, control pack A, LP Nat</td>
<td>R2018200</td>
<td>R2018300</td>
<td>R2018400</td>
<td>R2018500</td>
</tr>
<tr>
<td>29</td>
<td>Gas train assembly, control pack B and E, Nat</td>
<td>R2018600</td>
<td>R2018700</td>
<td>R2018800</td>
<td>R2018900</td>
</tr>
<tr>
<td>30</td>
<td>Gas train assembly, control pack B and E, LP Nat</td>
<td>R2019000</td>
<td>R2019100</td>
<td>R2019200</td>
<td>R2019300</td>
</tr>
<tr>
<td>31</td>
<td>Gas valve, safety</td>
<td>R2011300</td>
<td>R2003300</td>
<td>R2003300</td>
<td>R2003300</td>
</tr>
<tr>
<td>32</td>
<td>Gas valve, solenoid safety, for control packs B & E</td>
<td>R2019400</td>
<td>R2019500</td>
<td>R2019500</td>
<td>R2019500</td>
</tr>
<tr>
<td>33</td>
<td>Gas valve, mod valve actuator</td>
<td>R2003400</td>
<td>R2003400</td>
<td>R2003400</td>
<td>R2003400</td>
</tr>
<tr>
<td>34</td>
<td>Gas valve, mod valve body</td>
<td>R2011400</td>
<td>R2011400</td>
<td>not used</td>
<td>R2003500</td>
</tr>
<tr>
<td>35</td>
<td>Gas valve, mod valve body, size 2000, Nat</td>
<td>not used</td>
<td>not used</td>
<td>not used</td>
<td>R2003500</td>
</tr>
<tr>
<td>36</td>
<td>Gas valve, mod valve body, size 2000, LP</td>
<td>not used</td>
<td>not used</td>
<td>not used</td>
<td>R2011400</td>
</tr>
<tr>
<td>37</td>
<td>Gas valve, mod complete (body and actuator)</td>
<td>R2011500</td>
<td>R2011500</td>
<td>not used</td>
<td>R2003600</td>
</tr>
<tr>
<td>38</td>
<td>Gas valve, mod complete (body and actuator)</td>
<td>not used</td>
<td>not used</td>
<td>R2003600</td>
<td>not used</td>
</tr>
<tr>
<td>39</td>
<td>Gas valve, mod complete (body and actuator)</td>
<td>not used</td>
<td>not used</td>
<td>R2011500</td>
<td>not used</td>
</tr>
<tr>
<td>40</td>
<td>Gas valve, manual</td>
<td>R2011600</td>
<td>R2003700</td>
<td>R2003700</td>
<td>R2003700</td>
</tr>
<tr>
<td>41</td>
<td>Double valve body / Actuator</td>
<td>not used</td>
<td>not used</td>
<td>R2019600</td>
<td>R2019600</td>
</tr>
<tr>
<td>42</td>
<td>Double valve body</td>
<td>not used</td>
<td>not used</td>
<td>R2019700</td>
<td>R2019700</td>
</tr>
<tr>
<td>43</td>
<td>On/Off Actuator</td>
<td>R2019800</td>
<td>R2019800</td>
<td>R2019800</td>
<td>R2019800</td>
</tr>
<tr>
<td>44</td>
<td>Normally open vent valve</td>
<td>R2014400</td>
<td>R2014400</td>
<td>R2014400</td>
<td>R2014400</td>
</tr>
<tr>
<td>45</td>
<td>Gas orifice kit (orifice in holder), Nat</td>
<td>R2011700</td>
<td>R2019900</td>
<td>R2020000</td>
<td>R2003800</td>
</tr>
<tr>
<td>46</td>
<td>Gas orifice kit (orifice in holder), LP</td>
<td>R2011800</td>
<td>R2020100</td>
<td>R2020200</td>
<td>R2010500</td>
</tr>
<tr>
<td>47</td>
<td>Gas orifice, Nat</td>
<td>R2011900</td>
<td>R2020300</td>
<td>R2020400</td>
<td>R2003900</td>
</tr>
<tr>
<td>48</td>
<td>Gas orifice, LP</td>
<td>R2012000</td>
<td>R2020500</td>
<td>R2020600</td>
<td>R2010600</td>
</tr>
<tr>
<td>49</td>
<td>Pressure switch, high gas</td>
<td>R2004000</td>
<td>R2004000</td>
<td>R2004000</td>
<td>R2004000</td>
</tr>
</tbody>
</table>
ELECTRICAL COMPONENTS

See Figure 42

<table>
<thead>
<tr>
<th>Item Description</th>
<th>1200</th>
<th>1600</th>
<th>2000</th>
<th>2400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformer, 115/24V, 40VA step down,</td>
<td>R0021300</td>
<td>R0021300</td>
<td>R0021300</td>
<td>R0021300</td>
</tr>
<tr>
<td>Transformer, 115/24V, 80VA step down,</td>
<td>R2022500</td>
<td>R2022500</td>
<td>R2022500</td>
<td>R2022500</td>
</tr>
<tr>
<td>Transformer, 24/115 step up</td>
<td>R2005500</td>
<td>R2005500</td>
<td>R2005500</td>
<td>R2005500</td>
</tr>
<tr>
<td>Fuse kit, 2 Amp, 5 pack (not shown)</td>
<td>RE2043600</td>
<td>RE2043600</td>
<td>RE2043600</td>
<td>RE2043600</td>
</tr>
<tr>
<td>Fuse kit, 5 Amp, 5 pack (Control packs B and E)</td>
<td>RE2043500</td>
<td>RE2043500</td>
<td>RE2043500</td>
<td>RE2043500</td>
</tr>
<tr>
<td>Fuse holder (qty of 5)</td>
<td>RE2000300</td>
<td>RE2000300</td>
<td>RE2000300</td>
<td>RE2000300</td>
</tr>
<tr>
<td>Diagnostic lights kit</td>
<td>R2005600</td>
<td>R2005600</td>
<td>R2005600</td>
<td>R2005600</td>
</tr>
<tr>
<td>Ignition control (Single Trial)</td>
<td>R2014100</td>
<td>R2014100</td>
<td>R2014100</td>
<td>R2014100</td>
</tr>
<tr>
<td>Ignition control (Three Trial, Control packs F and G)</td>
<td>R2022600</td>
<td>R2022600</td>
<td>R2022600</td>
<td>R2022600</td>
</tr>
<tr>
<td>High limit, manual reset, RHCH boiler</td>
<td>RE0015900</td>
<td>RE0015900</td>
<td>RE0015900</td>
<td>RE0015900</td>
</tr>
<tr>
<td>High limit, manual reset, RHCV water heater</td>
<td>RE2217800</td>
<td>RE2217800</td>
<td>RE2217800</td>
<td>RE2217800</td>
</tr>
<tr>
<td>Temperature control, RHCH boiler</td>
<td>R2005800</td>
<td>R2005800</td>
<td>R2005800</td>
<td>R2005800</td>
</tr>
<tr>
<td>Module, proportional control</td>
<td>R2005900</td>
<td>R2005900</td>
<td>R2005900</td>
<td>R2005900</td>
</tr>
<tr>
<td>Relay, DPDT, 24V coil</td>
<td>R2006000</td>
<td>R2006000</td>
<td>R2006000</td>
<td>R2006000</td>
</tr>
<tr>
<td>Relay, Time Delay on Make</td>
<td>R2006100</td>
<td>R2006100</td>
<td>R2006100</td>
<td>R2006100</td>
</tr>
<tr>
<td>Relay, DPDT, 120V coil</td>
<td>R2006200</td>
<td>R2006200</td>
<td>R2006200</td>
<td>R2006200</td>
</tr>
<tr>
<td>Relay, EM2 kit</td>
<td>RE2077700</td>
<td>RE2077700</td>
<td>RE2077700</td>
<td>RE2077700</td>
</tr>
<tr>
<td>Relay, 115VAC SPST</td>
<td>R2014200</td>
<td>R2014200</td>
<td>R2014200</td>
<td>R2014200</td>
</tr>
<tr>
<td>Voltage regulator</td>
<td>R2006300</td>
<td>R2006300</td>
<td>R2006300</td>
<td>R2006300</td>
</tr>
<tr>
<td>Terminal block, 2 position</td>
<td>R2006400</td>
<td>R2006400</td>
<td>R2006400</td>
<td>R2006400</td>
</tr>
<tr>
<td>Terminal block, 4 position</td>
<td>R2006500</td>
<td>R2006500</td>
<td>R2006500</td>
<td>R2006500</td>
</tr>
<tr>
<td>Sensor, temperature control (not shown)</td>
<td>R2006600</td>
<td>R2006600</td>
<td>R2006600</td>
<td>R2006600</td>
</tr>
<tr>
<td>Switch, toggle, 3-way SPST</td>
<td>R2007700</td>
<td>R2007700</td>
<td>R2007700</td>
<td>R2007700</td>
</tr>
<tr>
<td>Switch, toggle, DPDT</td>
<td>R2015000</td>
<td>R2015000</td>
<td>R2015000</td>
<td>R2015000</td>
</tr>
<tr>
<td>Control signal converter</td>
<td>R2012700</td>
<td>not used</td>
<td>not used</td>
<td>not used</td>
</tr>
<tr>
<td>Bell, alarm, 24V</td>
<td>R2014200</td>
<td>R2014200</td>
<td>R2014200</td>
<td>R2014200</td>
</tr>
<tr>
<td>Cover, control panel top</td>
<td>R2006700</td>
<td>R2006700</td>
<td>R2006700</td>
<td>R2006700</td>
</tr>
<tr>
<td>Cover, control panel bottom</td>
<td>R2007000</td>
<td>R2007000</td>
<td>R2007000</td>
<td>R2007000</td>
</tr>
<tr>
<td>Enclosure, control panel</td>
<td>R2006800</td>
<td>R2006800</td>
<td>R2006800</td>
<td>R2006800</td>
</tr>
<tr>
<td>Voltage divider panel, Std and control pack options A, C, and D</td>
<td>R2006900</td>
<td>R2006900</td>
<td>R2006900</td>
<td>R2006900</td>
</tr>
<tr>
<td>Voltage divider panel, control pack options B and E</td>
<td>R2015200</td>
<td>R2015200</td>
<td>R2015200</td>
<td>R2015200</td>
</tr>
<tr>
<td>Support, control panel bottom</td>
<td>R2007100</td>
<td>R2007100</td>
<td>R2007100</td>
<td>R2007100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>1600</td>
<td>2000</td>
<td>2400</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Panel, diagnostic lights</td>
<td>R2007300</td>
<td>R2007300</td>
<td>R2007300</td>
</tr>
<tr>
<td>89</td>
<td>Bracket, mounting, diagnostic panel</td>
<td>R2007400</td>
<td>R2007400</td>
<td>R2007400</td>
</tr>
<tr>
<td>90</td>
<td>Standoff</td>
<td>R2007500</td>
<td>R2007500</td>
<td>R2007500</td>
</tr>
<tr>
<td>91</td>
<td>Hardware kit, control panel</td>
<td>R2007600</td>
<td>R2007600</td>
<td>R2007600</td>
</tr>
<tr>
<td>92</td>
<td>Bracket, support, control panel top</td>
<td>R2007800</td>
<td>R2007800</td>
<td>R2007800</td>
</tr>
</tbody>
</table>

HEAT EXCHANGER / WATER PATH

See Figure 43

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>Header cover</td>
<td>R2012800</td>
<td>R2022700</td>
</tr>
<tr>
<td>94</td>
<td>Header cover, pump mount</td>
<td>R2022900</td>
<td>R2023000</td>
</tr>
<tr>
<td>95</td>
<td>Water barrier assembly</td>
<td>R2012900</td>
<td>R2023300</td>
</tr>
<tr>
<td>96</td>
<td>Gasket kit, heat exchanger cover</td>
<td>R2013000</td>
<td>R2023500</td>
</tr>
<tr>
<td>97</td>
<td>Hardware kit, heat exchanger cover</td>
<td>R2013100</td>
<td>R2023700</td>
</tr>
<tr>
<td>98</td>
<td>Gauge, temperature/pressure</td>
<td>RA0079000</td>
<td>RA0079000</td>
</tr>
<tr>
<td>99</td>
<td>Pressure relief valve, RHCH boiler</td>
<td>A0063600</td>
<td>A0063600</td>
</tr>
<tr>
<td>100</td>
<td>Pressure relief valve, RHCV boiler</td>
<td>A0001200</td>
<td>A0064400</td>
</tr>
<tr>
<td>101</td>
<td>Immersion well, high limit</td>
<td>RE2058300</td>
<td>RE2058300</td>
</tr>
<tr>
<td>102</td>
<td>Immersion well, temperature control</td>
<td>RE2074000</td>
<td>RE2074000</td>
</tr>
<tr>
<td>103</td>
<td>Tube cleaning kit (not shown)</td>
<td>R2000700</td>
<td>R2000700</td>
</tr>
<tr>
<td>104</td>
<td>Flow switch (with paddle)</td>
<td>R2008400</td>
<td>R2008400</td>
</tr>
<tr>
<td>105</td>
<td>Low water cutoff, manual reset</td>
<td>RE2075100</td>
<td>RE2075100</td>
</tr>
<tr>
<td>106</td>
<td>Pump, circulator (normal water)</td>
<td>R2023900</td>
<td>R2024100</td>
</tr>
<tr>
<td>107</td>
<td>Pump, circulator (hard water)</td>
<td>R2024000</td>
<td>R2024200</td>
</tr>
<tr>
<td>108</td>
<td>Bracket, pump mounting (normal water)</td>
<td>R2024600</td>
<td>R2024500</td>
</tr>
<tr>
<td>109</td>
<td>Bracket, pump mounting (hard water)</td>
<td>R2024600</td>
<td>R2024600</td>
</tr>
<tr>
<td>110</td>
<td>Flange, pump, gaskets / hardware</td>
<td>R2024700</td>
<td>R2024800</td>
</tr>
<tr>
<td>111</td>
<td>Shims, pump bracket (10 ea)</td>
<td>R2013600</td>
<td>R2013600</td>
</tr>
<tr>
<td>112</td>
<td>Gaskets (10 pk)</td>
<td>R2013600</td>
<td>R2013600</td>
</tr>
<tr>
<td>113</td>
<td>Temperature switch, bi-metal disc</td>
<td>R2024900</td>
<td>R2024900</td>
</tr>
</tbody>
</table>

JACKET

See Figure 44

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>Panel, upper front access</td>
<td>R2015101</td>
<td>R2015101</td>
</tr>
<tr>
<td>116</td>
<td>Panel, lower front access</td>
<td>R2015102</td>
<td>R2015102</td>
</tr>
<tr>
<td>117</td>
<td>Panel, waterway access</td>
<td>R2025000</td>
<td>R2025100</td>
</tr>
<tr>
<td>118</td>
<td>Panel, waterway access, pump</td>
<td>R2025400</td>
<td>R2025400</td>
</tr>
<tr>
<td>119</td>
<td>Panel, waterway cover</td>
<td>R2025600</td>
<td>R2025600</td>
</tr>
<tr>
<td>120</td>
<td>Panel, pump access</td>
<td>R2025700</td>
<td>R2025800</td>
</tr>
<tr>
<td>121</td>
<td>Panel, PRV access</td>
<td>R2025900</td>
<td>R2025900</td>
</tr>
<tr>
<td>122</td>
<td>Panel, rear access</td>
<td>R2008600</td>
<td>R2008600</td>
</tr>
<tr>
<td>123</td>
<td>Panel, front left</td>
<td>R2008700</td>
<td>R2008700</td>
</tr>
<tr>
<td>124</td>
<td>Panel, front right</td>
<td>R2008800</td>
<td>R2008800</td>
</tr>
<tr>
<td>125</td>
<td>Panel, rear left</td>
<td>R2008900</td>
<td>R2008900</td>
</tr>
<tr>
<td>126</td>
<td>Panel, common access</td>
<td>R2009100</td>
<td>R2009100</td>
</tr>
<tr>
<td>127</td>
<td>Panel, top</td>
<td>R2009200</td>
<td>R2009200</td>
</tr>
<tr>
<td>128</td>
<td>Panel, support</td>
<td>R2009300</td>
<td>R2009300</td>
</tr>
<tr>
<td>129</td>
<td>Panel, flue vent access</td>
<td>R2026000</td>
<td>R2026000</td>
</tr>
<tr>
<td>130</td>
<td>Panel, ducted air cover</td>
<td>R2009500</td>
<td>R2009500</td>
</tr>
<tr>
<td>131</td>
<td>Jacket trim kit</td>
<td>R2009600</td>
<td>R2009600</td>
</tr>
<tr>
<td>132</td>
<td>Hardware kit, jacket</td>
<td>R2009700</td>
<td>R2009700</td>
</tr>
<tr>
<td>133</td>
<td>Window, control / display</td>
<td>R2009800</td>
<td>R2009800</td>
</tr>
<tr>
<td>134</td>
<td>Window guide</td>
<td>R2009900</td>
<td>R2009900</td>
</tr>
<tr>
<td>135</td>
<td>Window latch</td>
<td>R2010000</td>
<td>R2010000</td>
</tr>
<tr>
<td>136</td>
<td>Jacket retro-fit kit (standard)</td>
<td>R2026400</td>
<td>R2026500</td>
</tr>
<tr>
<td>137</td>
<td>Jacket retro-fit kit (mounted pump)</td>
<td>R2026800</td>
<td>R2026900</td>
</tr>
</tbody>
</table>
Figure 39. Combustion Components.

1 - Complete Combustion Component Assembly
11 - Hardware Kit, Combustion Chamber
Figure 40. Gas Train/Combustion Air Components.
Figure 41. Gas Train Components.

For sizes 1200, 1600 and 2000 Propane gas

For sizes 2000 Natural gas and 2400
Figure 42. Electrical Components.
Figure 43. Heat Exchanger / Water Path Components.
132 - Jacket Hardware Kit
136 - Jacket Retro-fit Kit (standard)
137 - Jacket Retro-fit Kit (mounted pump)
Tables Listing

Table 1 Terminals for Outdoor Installation 6
Table 2 Clearances .. 6
Table 3 Vent / Air Pipe Sizes .. 7
Table 4 Horizontal Vent and Air Terminals
 For Indoor Installations ... 9
Table 5 Required Combustion Air Piping Material 9
Table 6 Required Venting Material 9
Table 7 Gas Piping Sizes ... 10
Table 8 Water Flow Requirements – RHCH (Boiler) 13
Table 9 Water Flow Requirements – RHCV
 (Water Heater) ... 15
Table 10 Air & Gas Orifice Differentials at Full Fire 40

Figures Listing

Figure 1 Dimensional Drawing .. 5
Figure 2 Combustion Air and Vent Through Roof 7
Figure 3 Combustion Air and Vent Through Side-Wall 8
Figure 4 Hydronic Piping – Multiple Boilers,
 Primary Secondary System 12
Figure 5 Hydronic Piping – Multiple Boilers,
 Low Temperature System 12
Figure 6 Hydronic Piping – One Boiler,
 Multi-Temperature System 13
Figure 7 Hydronic Piping - Alternate System 14
Figure 8 Hydronic Piping - Alternate Low
 Temperature System .. 14
Figure 9 Water Heater Piping – One Heater, One Tank 16
Figure 10 Water Heater Piping – Multiple Heaters,
 One Tank ... 16
Figure 11 Water Heater Piping – One Heater,
 Multiple Tanks ... 17
Figure 12 Water Heater Piping – Multiple Heaters,
 Multiple Tanks ... 17
Figure 13 Temperature Control 19
Figure 14 Proportion Control ... 20
Figure 15 Control Parameter Graph 22
Figure 16 Control Parameter Possible Interference 23
Figure 17 Control Parameter Possible Interference 23
Figure 18 Wiring Diagram, Model 1200,
 Standard and Codes A, C, E, F and G 26
Figure 19 Wiring Diagram, Models 1600, 2000 and 2400,
 Standard and Codes A, C, E, F and G 27
Figure 20 Wiring Diagram Model 1200,
 Codes B and E .. 28
Figure 21 Wiring Diagram, Models 1600, 2000 and 2400,
 Codes B and E .. 29
Figure 22 Wiring Diagram, Model 1200, Pump-Mounted,
 Standard and Codes A, C, E, F and G 30
Figure 23 Wiring Diagram, Models 1600, 2000 and 2400,
 Pump-Mounted,
 Standard and Codes A, C, E, F and G 31
Figure 24 Wiring Diagram, Model 1200, Pump-Mounted,
 Codes B and E .. 32
Figure 25 Wiring Diagram, Models 1600, 2000 and 2400,
 Pump-Mounted, Codes B and E 33
Figure 26 Wiring Schematic, Model 1200,
 Standard and Codes A, C, E, F and G 34
Figure 27 Wiring Schematic, Models 1600, 2000 and 2400,
 Standard and Codes A, C, E, F and G 34
Figure 28 Wiring Schematic, Model 1200,
 Codes B and E .. 35
Figure 29 Wiring Schematic, Models 1600, 2000 and 2400,
 Codes B and E .. 35
Figure 30 Wiring Schematic, Model 1200, Pump-Mounted,
 Standard and Codes A, C, E, F and G 36
Figure 31 Wiring Schematic, Models 1600, 2000 and 2400,
 Pump-Mounted,
 Standard and Codes A, C, E, F and G 36
Figure 32 Wiring Schematic, Model 1200, Pump-Mounted,
 Codes B and E .. 37
Figure 33 Wiring Schematic, Models 1600, 2000 and 2400,
 Pump-Mounted, Codes B and E 37
Figure 34 Gas/Air Test Panel .. 39
Figure 35 Test Panel Valves .. 39
Figure 36 Gas Trains ... 43
Figure 37 Gas Train .. 44
Figure 38 Control Panel ... 44
Figure 39 Combustion Components 50
Figure 40 Gas Train/Combustion Air Components 51
Figure 41 Gas Train Components 52
Figure 42 Electrical Components 53
Figure 43 Heat Exchanger / Water Path 54
Figure 44 Jacket Components .. 55