

FOR YOUR SAFETY: This product must be installed and serviced by a professional service technician, qualified in hot water heater installation and maintenance. Improper installation and/or operation could cause serious injury, property damage, or death. Improper installation and/or operation will void the warranty.

A WARNING

Installer must comply with startup and installation instructions to avoid a dangerous situation.

AVERTISSEMENT

D'installation doit se conformer aux instructions d'installation et de démarrage pour éviter une situation dangereuse.

Table of Contents

Section	1 Overview
1.A	Safety Notes
Section	2 Wiring and Sensor Placement3
2.A	Panel Layout4
2.B	Main Power Feed4
2.C	Control Wiring4
2.C.1	Wiring HPWH(s) to TSC4
2.C.2	Sensor Wiring5
2.C.2.a	Sensor Location Details5
2.C.2.b	Optional Swing Tank Temp Sensor:5
2.C.2.c	Optional Temperature Sensors
	for Measurement and Verification:6
2.C.3	Optional Water Flow Meters
	for Measurement and Verification:7
2.C.4	Swing Tank Wiring Connections8
2.C.5	Back-up Heater and Back-up Heater
	Pump Output9
2.D	Optional CTA-2045
	Gateway Wiring10
2.E	BMS Connections11

Section	3 Control Navigation and Installation Setup1	15
3.A	Security	
3.A.1	User Security Level1	
3.A.2	Installer Security Level1	
3.B	Service Menu1	19
3.B.1	Alarm History	21
3.B.2	Analog Inputs2	21
3.B.3	Digital Inputs and Outputs2	23
3.B.4	Cascade Settings2	23
3.B.5	Heat Pump Details2	
3.B.6	CTA-2045 Status2	24
3.B.7	Schedule (Operating Mode)2	25
3.B.8	IP Address2	27
3.B.9	Setup2	
3.B.10	Manual Control2	29
3.B.11	Change Mode Setpoints	30
3.B.12	Factory Reset	31
Section	4 Alarms and Faults	32
Section	5 Wire Schematics	35

Section 1 Overview.

The Tank System Controller (TSC) is specifically designed to work with Laars E-Therm Commercial Heat Pump Water Heater systems. These systems consist of one or more heat pumps, stratified storage tanks, a temperature maintenance tank (also called a swing tank), and up to two back-up heaters that may be used.

The overall purpose of the TSC is to have several temperature sensors distributed across the stratified storage tanks, allowing the TSC to operate the heat pump(s) and adjust their discharge temperatures in an efficient and systematic manner. In addition, the TSC can interface with the swing tank to support load shift control (schedule), CTA-2045, and to allow programmable temperature setpoint. The TSC also works with water flow meters to support measurement and verification systems.

There are two kits available, shipped with the following items: CA023901 – Tank System Controller

- Control panel
- 10 RTD sensors
- 10 thermal sensor wells
- 10 junction boxes
- This manual

The TSC uses five temperature sensors that are distributed across the stratified storage system, and one that is used for the temperature maintenance tank. An additional sensor is used in the piping between the outlet of the cold water makeup tank (closest to the heat pump) and the heat pump inlet. They operate the heat pump(s) and adjust their discharge temperatures in an efficient and systematic manner.

Three optional sensors are provided for advanced control features. See Section 2.C on page 4 for more detail.

- CA023902 Tank System Controller with CTA-2045 Gateway
- Control panel
- 10 RTD sensors
- 10 thermal sensor wells
- 10 junction boxes
- Communication gateway
- Wi-Fi dongle
- DB9 communication cable
- This manual

1.A Safety Notes

Safety Notes are used throughout this manual to bring attention to the presence of hazards with various risk levels and to offer important information concerning the life of this product. There are 3 basic types.

	Indicates an imminently hazardous situation which, if not avoided, can or will result in death or serious injury and can or will result in catastrophic property damage.
	Indicates a potentially hazardous situation which, if not avoided, may result in moderate injury and/or property damage.
NOTE:	Indicates instructions that are important to that topic but not related to personal injury or property damage.

A WARNING

This unit must be installed in accordance with the procedures detailed in this manual, or the manufacturers warranty will be voided. The installation must conform to the requirements of the local jurisdiction having authority. Any modifications to this water heater, its controls, or wiring may void the warranty. If field conditions require modifications, consult the factory representative before initiating such modifications.

NOTE: This section covers physical wiring and sensor connections. In addition to physical connections, many control operations require setup within the TSC. See section 3 for control setup and operation.

Electrical Shock Hazard

Electrical shock can cause severe injury, death or property damage. Disconnect the power supply before beginning installation or changing the wiring to prevent electrical shock or damage to the equipment. It may be necessary to turn off more than one power supply to disconnect. All electrical wiring is to be done in accordance with local codes, or in the absence of local codes, with: 1) The National Electrical Code ANSI/NFPA No. 70 - latest Edition, or 2) CSA STD. C22.1 "Canadian Electrical Code - Part 1." This appliance must be electrically grounded in accordance with these codes.

Section 2 Wiring and Sensor Placement

The Tank System Controller (TSC) is a UL508A certified control system. The controller must be installed following the NFPA 70 - National Electric Code and/ or the Local Authority Having Jurisdiction. Failure to follow these guidelines may result in personal injury and/or property damage.

This section discusses wiring and sensor placement only. Consult the installation manual for the heat pump for all other installation information, such as placement and piping.

Note: This section covers physical wiring and sensor connections. In addition to physical connections, many control operations require setup within the TSC. See section 3 for control setup and operation.

2.A Panel Layout

See Figure 2

2.B Main Power Feed

The control requires a single 15A 120VAC circuit for operation. The enclosure has a removable bottom panel to allow the contractor to easily drill out the required conduit penetrations without allowing metal shavings to get stuck in the enclosure and/or damage sensitive electrical components. There is an internal 4-Amp circuit breaker protecting the 24VDC power supply and associated electronics. The 120V circuit is most easily brought into the enclosure on the left side (if facing front) and connected to the appropriate terminals.

Figure 2. Internal Layout of Enclosure

Figure 3. Main Power Feed Terminals

2.C Control Wiring

2.C.1 Wiring HPWH(s) to TSC

The TSC can be connected to a single heat pump, or multiple heat pumps in a system. It can control and stage up to 16 heat pumps in a cascaded system. True redundancy is achieved by running individual Cat 5 or Cat 6 cables between the TSC and each heat pump within the system. There is an Ethernet switch mounted in the TSC enclosure for easy connection to the heat pump and an Ethernet switch mounted in each heat pump control panel for easy connection to the heat pump. There are currently six available spaces on the TSC Ethernet switch for cascading multiple heat pumps. Any open port can be used. When more than six heat pumps are needed, an additional ethernet switch is required. The Ethernet switch is located in the upper left corner of the TSC enclosure. Drill a hole in the bottom removable panel for the appropriate conduit/cable penetrations. Route the Cat 5 or Cat 6 cable through the left wire duct and terminate at the Ethernet switch.

2.C.2 Sensor Wiring

The control is shipped with 10 RTD sensors. The sensors have 12" wire leads, which require extension wire added to reach the TSC panel. To save space, double level terminal blocks are used to allow more connections while keeping the enclosure at 24" wide. They are numbered top and bottom for easy identification.

For electrically noisy areas, shielded RTD wire may be required. Examples of extension wire are shown below. Equivalent extension wire is acceptable. Figure 4. Photo of Internal Layout

- Automation Direct part number RTDW-22-1U-P-1 (non-shielded)
- Automation Direct part number RTDW-24-1S-F-1 (shielded)

Ten three-position junction boxes are also included, and allow for a watertight seal for making these connections. The TSC uses up to ten RTD sensors (supplied with the control) across the entire system for controlling setpoints and load shift abilities.

Six sensors (shown as sensors 1 through 6) are to be equally spaced across the storage volume within the stratified storage tank farm. For clarity in this manual, these sensors have been named based on the tank volume percentage within the tank farm.

One optional sensor (shown as sensor 7) can be installed in the swing tank to support its operation.

The three remaining sensors (shown as sensors 8 through 10) can be used with Advance Load Up features for demand response and/or installations within the the Measurement & Verification systems option.

2.C.2.a Sensor Location Details

Required Temperature Sensors:

• Sensor 1: Heat Pump Inlet Protection Sensor - This sensor is to be installed in the piping between the cold water makeup tank and the heat pump(s),

preferably within two feet of the tank outlet.

- Sensor 2: Tank Farm 10-15% Sensor Temp This sensor is to be installed in the sensor well in the tank that most closely matches 10-15% of the total storage water in the system. This sensor will always be placed in the cold water makeup tank.
- Sensor 3: Tank Farm 25-35% Sensor Temp This sensor is to be installed in the sensor well in the tank that most closely matches 25-35% of the total storage water in the system.
- Sensor 4: Tank Farm 40-50% Sensor Temp This sensor is to be installed in the sensor well in the tank that most closely matches 40-50% of the total storage water in the system.
- Sensor 5: Tank Farm 60-70% Sensor Temp This sensor is to be installed in the sensor well in the tank that most closely matches 60-70% of the total storage water in the system.
- Sensor 6: Tank Farm 75-85% Sensor Temp This sensor is to be installed in the sensor well in the tank that most closely matches 75-85% of the total storage water in the system.

2.C.2.b Optional Swing Tank Temperature Sensor:

 Sensor 7: Swing Tank Sensor – This sensor is to be installed in the sensor well in the swing tank to support load shift control (schedule), CTA-2045, and to allow programmable temperature setpoint of the swing tank.

2.C.2.c Optional Temperature Sensors for Measurement and Verification:

- Sensor 8: Cold Water Make-Up Temp This sensor is to be installed in the piping on the cold-water line that feeds the tanks and mixing system (total domestic water usage). This optional sensor must be used in conjunction with a flow meter, as per Section 3
- Sensor 9: Mixing Valve Outlet Temp This sensor is to be installed in the piping at the mixing valve outlet.
- Sensor 10: Hot Water Return Temp This sensor is to be installed in the DHW re-circulation return that feeds the swing tank and mixing system (total recirculation water flow). This optional sensor must be used in conjunction with a flow meter, as per Section 3

Sensor connections are shown in table Table 1. Also see Figure 5 that shows all sensor connections.

Sensor Number	White Wire	Red Wire 1*	Red Wire 2*			
1	TB3:46	TB3:44	TB3:45			
2	TB3:47	TB3:48	TB3:49			
3	TB3:52	TB3:50	TB3:51			
4	TB3:53	TB3:54	TB3:55			
5	TB3:58	TB3:56	TB3:57			
6	TB3:59	TB3:60	TB3:61			
7	TB3:64	TB3:62	TB3:63			
8	TB3:35	TB3:36	TB3:37			
9	TB3:40	TB3:38	TB3:39			
10	TB3:41	TB3:42	TB3:43			
*Red wires are interchangeable						

Table 1. Sensor Locations.

Physical sensor placement is dependent on the system. During the control setup process, the installer will choose the number of stratified tanks, the piping strategy (parallel vs. series), and a choice of one or two back up heaters (if used). Once setup is complete, the homescreen will visually depict the piping, and the distribution of the tank sensors.

2.C.3 Optional Water Flow Meters for Measurement and Verification:

Flow meters are optional system components that are used for the calculation of system efficiency (system COP).

Clamp-on ultrasonic flow meters are recommended for ease of install and service. The flow meter must be 24VDC powered with 4-20mA feedback for integration into the TSC. The meter must be sized for expected water flow range and pipe size/material. Keyence FD-R Series and FD-H Series are recommended.

Flow meter manufacturer instructions must be consulted and followed.

For measurement and verification systems, flow meters are installed in three locations within the heat pump system, as shown in Figure 6.

CANCER AND REPRODUCTIVE HARM. WWW.P65WARNINGS.CA.GOV. AS REQUIRED BY THE STATE OF CALIFORNIA PROPOSITION 65.

Cold Water Make-up Flow 4-20mA signal	TB3:27
Cold Water Make-up Flow 0V	TB3:28
Hot Water Return Flow 4-20mA signal	TB3:29
Hot Water Return Flow 0V	TB3:30
Heat Pump Flow 4-20mA signal	TB3:31
Heat Pump Flow 0V	TB3:32

2.C.4 Swing Tank Wiring Connections

The TSC can integrate a swing tank (also known as a temperature maintenance tank) directly into the PLC to control re-circulation losses, advanced load up features, or to disable the swing tank under critical peak events or grid emergency situations. The swing tank uses an internal 120VAC temperature limit control and 120VAC coil contactors to control and operate the internal resistive heat elements. By intercepting the power coming from the temperature limit control, as shown in

Figure 7, the TSC can disable the heating elements, monitor the heat elements run-time, and allow advanced load up to a higher temperature when required. Three (14 AWG minimum) conductors are needed to run between the swing tank control box and the TSC, as shown in Figure 7.

120V (N) Neutral from Swing Tank

TB3:6

Figure 7.	Swing	Tank	Wiring	Connections
Figure /.	Swing	Iank	winnig	Connections

2.C.5 Back-up Heater and Back-up Heater Pump Output

The TSC can integrate and control up to two independent back-up heat sources and two independent back-up heater pumps. These are independently driven by the PLC system and system setup within the TSC. Four dry contacts are provided to control these outputs. Each contact has a maximum rating of to 30VAC/VDC. Power to feed these dry contacts is field supplied. See Figure 8 for wiring connections.

Backup Heater #1 Enable dry contact input (max 30VAC/VDC)	TB3:19			
Backup Heater #1 Enable dry contact output	TB3:20			
Backup Heater Pump #1 dry contact input (max 30VAC/VDC)	TB3:21			
Backup Heater Pump #1 Enable dry contact output	TB3:22			
Backup Heater #2 Enable dry contact input (max 30VAC/VDC)				
Backup Heater #2 Enable dry contact output	TB3:24			
Backup Heater Pump #2 Enable dry contact input (max 30VAC/VDC)	TB3:25			
Backup Heater Pump #2 Enable dry contact output	TB3:26			

Figure 8. Back Up Heater Wiring

2.D Optional CTA-2045 Gateway Wiring

Optional CTA-2045 gateway is used with the TSC for utility demand response.

The CTA-2045 gateway is a 120VAC powered, Wi-Fi controlled gateway that communicates to the utility grid and communicates directly to the PLC via Modbus RTU (RS485). The CTA-2045 gateway is installed separately in the building (preferably near a strong Wi-Fi signal) and will be connected to the PLC enclosure using a standard DB9 cable

Figure 9. CTA-2045 Gateway

The CTA-2045 gateway is shipped with a twometer DB9 shielded cable for quick connection to the DB9 panel interface on the TSC enclosure, as shown in Figure 10. If longer cable is required, use DB9 male to female extension cable to extend the length

Figure 10. DB9 Communications Cable

Connect the included 120VAC cordset between the gateway and an appropriate 120VAC power receptacle.

Figure 11. DB9 Panel Interface

2.E BMS Connections

Building Management Systems can communicate with the TSC. BACnet IP, BACnet MSTP, Modbus TCP/IP, and Modbus RTU protocols are supported. Refer to the BMS gateway instructions for details on wiring and connectivity.

Table 2 (next 4 pages) shows the BACnet / Modbus Memory Map.

Hot Water Return Temp	Input	2	AI	2	F	
Tank Farm 0%	Input	3	AI	3	F	
Tank Farm 10%	Input	4	AI	4	F	
Tank Farm 25%	Input	5	AI	5	F	
Tank Farm 40%	Input	6	AI	6	F	
Tank Farm 60%	Input	7	AI	7	F	
Tank Farm 75%	Input	8	AI	8	F	
Swing Tank Temp	Input	9	AI	9	F	
Heat Pump Outlet Temp	Input	10	AI	10	F	
Cold Water Makeup Flow	Input	11	AI	11	GPMx100	
Heat Pump Flow	Input	12	AI	12	GPMx100	
Hot Water Return Flow	Input	13	AI	13	GPMx100	
Heat Pump Setpoint	Input	14	AI	14	F	
IWH 1 Enabled	Discrete	0	DI	0		0=Disable,1=Enabled
IWH 2 Enabled	Discrete	1	DI	1		0=Disable,1=Enabled
Swing Tank Enabled	Discrete	2	DI	2		0=Disable,1=Enabled
Heat Pump 1 Heat Demand	Discrete	101	DI	101		0=No Demand, 1=Demand
Heat Pump 2 Heat Demand	Discrete	102	DI	102		0=No Demand, 1=Demand
Heat Pump 3 Heat Demand	Discrete	103	DI	103		0=No Demand, 1=Demand
Heat Pump 4 Heat Demand	Discrete	104	DI	104		0=No Demand, 1=Demand
Heat Pump 5 Heat Demand	Discrete	105	DI	105		0=No Demand, 1=Demand
Heat Pump 6 Heat Demand	Discrete	106	DI	106		0=No Demand, 1=Demand
Heat Pump 7 Heat Demand	Discrete	107	DI	107		0=No Demand, 1=Demand
Heat Pump 8 Heat Demand	Discrete	108	DI	108		0=No Demand, 1=Demand
Heat Pump 9 Heat Demand	Discrete	109	DI	109		0=No Demand, 1=Demand
Heat Pump 10 Heat Demand	Discrete	110	DI	110		0=No Demand, 1=Demand
Heat Pump 11 Heat Demand	Discrete	111	DI	111		0=No Demand, 1=Demand
Heat Pump 12 Heat Demand	Discrete	112	DI	112		0=No Demand, 1=Demand
Heat Pump 13 Heat Demand	Discrete	113	DI	113		0=No Demand, 1=Demand
Heat Pump 14 Heat Demand	Discrete	114	DI	114		0=No Demand, 1=Demand
Heat Pump 15 Heat Demand	Discrete	115	DI	115		0=No Demand, 1=Demand
Heat Pump 16 Heat Demand	Discrete	116	DI	116		0=No Demand, 1=Demand
Heat Pump 1 Inlet						
Temperature	Input	101	AI	15	F	
Heat Pump 2 Inlet						
Temperature	Input	102	AI	16	F	
Heat Pump 3 Inlet						
Temperature	Input	103	AI	17	F	
Heat Pump 4 Inlet	1					
Temperature	Input	104	AI	18	F	
Heat Pump 5 Inlet	1					
Temperature	Input	105	AI	19	F	
	I					

Heat Pump 6 Inlet						
Temperature	Input	106	AI	20	F	
Heat Pump 7 Inlet						
Temperature	Input	107	AI	21	F	
Heat Pump 8 Inlet						
Temperature	Input	108	AI	22	F	
Heat Pump 9 Inlet						
Temperature	Input	109	AI	23	F	
Heat Pump 10 Inlet						
Temperature	Input	110	AI	24	F	
Heat Pump 11 Inlet						
Temperature	Input	111	AI	25	F	
Heat Pump 12 Inlet						
Temperature	Input	112	AI	26	F	
Heat Pump 13 Inlet						
Temperature	Input	113	AI	27	F	
Heat Pump 14 Inlet						
Temperature	Input	114	AI	28	F	
Heat Pump 15 Inlet						
Temperature	Input	115	AI	29	F	
Heat Pump 16 Inlet						
Temperature	Input	116	AI	30	F	
Heat Pump 1 Outlet					_	
Temperature	Input	201	AI	31	F	
Heat Pump 2 Outlet		202		22	_	
Temperature	Input	202	AI	32	F	
Heat Pump 3 Outlet	lineart	202		22	-	
Temperature	Input	203	AI	33	F	
Heat Pump 4 Outlet	lanut	204	A 1	24	F	
Temperature	Input	204	AI	34	F	
Heat Pump 5 Outlet	linesist	205	A 1	25	-	
Temperature	Input	205	AI	35	F	
Heat Pump 6 Outlet	Innut	206	A 1	36	F	
Temperature	Input	200	AI	50	Г	
Heat Pump 7 Outlet	Input	207	AI	37	F	
Temperature	Input	207	Ai	57	1	
Heat Pump 8 Outlet	Input	208	AI	38	F	
Temperature	Input	200		50	· ·	
Heat Pump 9 Outlet	Input	209	AI	39	F	
Temperature	input	205		55	-	
Heat Pump 10 Outlet	Input	210	AI	40	F	
Temperature	Input	210		40	· ·	
Heat Pump 11 Outlet	Input	211	AI	41	F	
Temperature	input	~ ~ ~ ~				
Heat Pump 12 Outlet	Input	212	AI	42	F	
Temperature				72		
Heat Pump 13 Outlet	Input	213	AI	43	F	
Temperature						

Heat Pump 14 Outlet						
Temperature	Input	214	AI	44	F	
Heat Pump 15 Outlet						
Temperature	Input	215	AI	45	F	
Heat Pump 16 Outlet						
Temperature	Input	216	AI	46	F	
Heat Pump 1 Power	Input	301	AI	47	Watts	
Heat Pump 2 Power	Input	302	AI	48	Watts	
Heat Pump 3 Power	Input	303	AI	49	Watts	
Heat Pump 4 Power	Input	304	AI	50	Watts	
Heat Pump 5 Power	Input	305	AI	51	Watts	
Heat Pump 6 Power	Input	306	AI	52	Watts	
Heat Pump 7 Power	Input	307	AI	53	Watts	
Heat Pump 8 Power	Input	308	AI	54	Watts	
Heat Pump 9 Power	Input	309	AI	55	Watts	
Heat Pump 10 Power	Input	310	AI	56	Watts	
Heat Pump 11 Power	Input	311	AI	57	Watts	
Heat Pump 12 Power	Input	312	AI	58	Watts	
Heat Pump 13 Power	Input	313	AI	59	Watts	
Heat Pump 14 Power	Input	314	AI	60	Watts	
Heat Pump 15 Power	Input	315	AI	61	Watts	
Heat Pump 16 Power	Input	316	AI	62	Watts	
Heat Pump 1 State	Input	401	AI	63		0-60 Compressor Phase
Heat Pump 2 State	Input	402	AI	64		0-60 Compressor Phase
Heat Pump 3 State	Input	403	AI	65		0-60 Compressor Phase
Heat Pump 4 State	Input	404	AI	66		0-60 Compressor Phase
Heat Pump 5 State	Input	405	AI	67		0-60 Compressor Phase
Heat Pump 6 State	Input	406	AI	68		0-60 Compressor Phase
Heat Pump 7 State	Input	407	AI	69		0-60 Compressor Phase
Heat Pump 8 State	Input	408	AI	70		0-60 Compressor Phase
Heat Pump 9 State	Input	409	AI	71		0-60 Compressor Phase
Heat Pump 10 State	Input	410	AI	72		0-60 Compressor Phase
Heat Pump 11 State	Input	411	AI	73		0-60 Compressor Phase
Heat Pump 12 State	Input	412	AI	74		0-60 Compressor Phase
Heat Pump 13 State	Input	413	AI	75		0-60 Compressor Phase
Heat Pump 14 State	Input	414	AI	76		0-60 Compressor Phase
Heat Pump 15 State	Input	415	AI	77		0-60 Compressor Phase
Heat Pump 16 State	Input	416	AI	78		0-60 Compressor Phase
Cold Water Makeup Flow	Discrete	10	DI	10		0=No Alarm, 1=Alarm
Sensor Alarm						
Hot Water Return Flow Sensor	Discrete	11	DI	11		0=No Alarm, 1=Alarm
Alarm	Disciete					
Heat Pump Flow Sensor Alarm	Discrete	12	DI	12		0=No Alarm, 1=Alarm
Cold Water Makeup Temperature Sensor Alarm	Discrete	13	DI	13		0=No Alarm, 1=Alarm
Mixing Valve Outlet Temperature Sensor Alarm	Discrete	14	DI	14		0=No Alarm, 1=Alarm

	1				,
Hot Water Return	Discrete	15	DI	15	0=No Alarm, 1=Alarm
Temperature Sensor Alarm	Discrete	10		10	
Tank Farm 0% Sensor Alarm	Discrete	16	DI	16	0=No Alarm, 1=Alarm
Tank Farm 10% Sensor Alarm	Discrete	17	DI	17	0=No Alarm, 1=Alarm
Tank Farm 25% Senosr Alarm	Discrete	18	DI	18	0=No Alarm, 1=Alarm
Tank Farm 40% Sensor Alarm	Discrete	19	DI	19	0=No Alarm, 1=Alarm
Tank Farm 60% Sensor Alarm	Discrete	20	DI	20	0=No Alarm, 1=Alarm
Tank Farm 75% Sensor Alarm	Discrete	21	DI	21	0=No Alarm, 1=Alarm
Swing Tank Temperature	Discrete	22	DI	22	0=No Alarm, 1=Alarm
Sensor Alarm					
Heat Pump 1 Communication	Discrete	23	DI	23	0=No Alarm, 1=Alarm
Alarm					
Heat Pump 2 Communication	Discrete	24	DI	24	0=No Alarm, 1=Alarm
Alarm					
Heat Pump 3 Communication	Discrete	25	DI	25	0=No Alarm, 1=Alarm
Alarm					
Heat Pump 4 Communication	Discrete	26	DI	26	0=No Alarm, 1=Alarm
Alarm					
Heat Pump 5 Communication	Discrete	27	DI	27	0=No Alarm, 1=Alarm
Alarm					,
Heat Pump 6 Communication	Discrete	28	DI	28	0=No Alarm, 1=Alarm
Alarm					· · · · · · · · · · · · · · · · · · ·
Heat Pump 7 Communication	Discrete	29	DI	29	0=No Alarm, 1=Alarm
Alarm					
Heat Pump 8 Communication	Discrete	30	DI	30	0=No Alarm, 1=Alarm
Alarm					
Heat Pump 9 Communication	Discrete	31	DI	31	0=No Alarm, 1=Alarm
Alarm					· · · · · · · · · · · · · · · · · · ·
Heat Pump 10 Communication	Discrete	32	DI	32	0=No Alarm, 1=Alarm
Alarm					· · · · · · · · · · · · · · · · · · ·
Heat Pump 11 Communication	Discrete	33	DI	33	0=No Alarm, 1=Alarm
Alarm					
Heat Pump 12 Communication	Discrete	34	DI	34	0=No Alarm, 1=Alarm
Alarm					
Heat Pump 13 Communication	Discrete	35	DI	35	0=No Alarm, 1=Alarm
Alarm	Discrete				
Heat Pump 14 Communication	Discrete	36	DI	36	0=No Alarm, 1=Alarm
Alarm	Discrete			50	
Heat Pump 15 Communication	Discrete	37	DI	37	0=No Alarm, 1=Alarm
Alarm	Discrete	57		57	
Heat Pump 16 Communication	Discrete	38	DI	38	0=No Alarm, 1=Alarm
Alarm	Disciete	50		50	
Remote I/O Communication	Discroto	20	DI	20	0-No Fault 1-Fault
Fault	Discrete	39		39	0=No Fault, 1=Fault
Mode Setpoints Data Table	Discrata	40		40	
Empty	Discrete	40	DI	40	0=No Fault, 1=Fault
Swing Tank Control Fault	Discrete	41	DI	41	0=No Fault, 1=Fault
Tank Farm Temperature	Discret	40		42	
Sensors Fault	Discrete	42	DI	42	0=No Fault, 1=Fault
	-				· · · · ·

 Table 2.
 BACnet / Modbus Memory Map

Section 3 Control Navigation and Installation Setup

The Home screen

The home screen view displays many of the system operational values and parameters, as well as navigation to the Service menu.

Screenshot

Login

024 10 44

To System

73 °F

Security (continued)

Press the drop-down symbol to show the

Note that, although shown, OEM level access is available only to factory personnel.

	m/dd/aaay h	h-mm:ss AM/PM
	OEM	tem ↑ Hot Water Return 'F 73 °F
User Pass	User	
	Installer	72 °F 3.01 gpm
	Ok 🔌 🛡 Cancel	E.

3.A.1 User Security Level

The User security level can be accessed by selecting User in the drop-down.

Enter the password "user" and select Ok.

E	0	ø				v	ISEI							
	Eng	ylish					••••	•		0	·	Ok	Cancel	
	1	2	3	4	5	6	7	8	9	0	•		B S De	1
	•	q	w	е	r	t	у	u	i	0	p	I	1 /	I
l	Cap	а	s	d	f	g	h	j	k	1	;	•	Enter	
1	仓 s	hift	z	x	с	v	b	n	m	,	•	/	1 Fn	
	of	2	Ê	M								-	↓ →	

The green unlocked icon, with the letter "U", will show in the upper right corner of the screen.

3.A.2 Installer Security Level

For authorized personnel only, the Installer level can be selected.

Security (continued)

Enter the password "inst" and select Ok.

The green unlocked icon, with the letter "I", will show in the upper right corner of the screen.

To Logout (red padlock), press and hold the green padlock for approximately 3 seconds, until the following is displayed. Then select Logout.

Logout to move between login levels. Note that the login level will time out after one hour.

3.B Service Menu

User Level Access:

The Service Menu within the user level shows the following service menu items. Optional CTA-2045 will only show on the TSC with CTA-2045.

A user defined Schedule is present, when the CTA-2045 option is not configured and/or selected.

Installer Level Access:

More features are accessible with Installer Level access than with User Level access. "Setup" allows an installer to configure the TSC with all of the system equipment connected to it. "Manual Control" allows the installer to manually operate components, to ensure they respond appropriately to commands. "Change Mode Setpoints" allows the installer to set all of the mode setpoints. "Factory Reset" will return all settings (other than IP addresses) to factory default settings.

A user defined Schedule is present, when the CTA-2045 option is not configured and/or selected.

Alarm History	Analog Inputs	Digital I/O	Cascade Settings	
Heat Pump Details Schedule		IP Address	Setup	
Manual Control	Change Mode Setpoints		Factory Reset	

3.B.1 Alarm History

This screen shows full alarm history by date and time. To display details of a listed alarm, press the info (i) button. The arrow button on the upper left corner of the screen will allow the list to be sorted.

everity	Alarm ID	Group ID		Name	Value	Date Time	Change	Info
Minor	32	1	High	ReturnTemperature	0	5/19/24 16:00	OFF	0
Minor	32	1	High	ReturnTemperature		5/19/24 16:00	ACK	0
Minor	32	1	High	ReturnTemperature	1	5/19/24 15:56	ON	0
Minor	32	1	High	ReturnTemperature	0	5/19/24 15:55	OFF	0
Minor	32	1	High	ReturnTemperature		5/19/24 15:49	ACK	0
Minor	32	1	High	ReturnTemperature	1	5/19/24 15:49	ON	0

3.B.2 Analog Inputs

The Analog Input Menu shows the status of the temperature and flow sensor inputs to the TSC.

Select Flow Meter Settings to get to the analog input settings.

With User Level access, pressing the Flow Meter Settings button displays a read only screen that indicates each of the flow meter upper range limits.

Analog Inputs Cold Water			Ū
Makeup Flow 9.50 gpm	Flow Meter Upper Limit:	150.00 GPM	
Heat Pump Inlet Water Flow	Flow Meter Upper Limit:	50.00 GPM	
Hot Water <u>Return Flow</u>	Flow Meter Upper Limit:	50.00 GPM	

With Installer Level access, pressing this button allows the installer to change the flow meter settings. The upper range limits are shown. If flow meters are used, each upper limit must be entered, to match the flow meter settings.

Analog Settings	mmm/dd/yyyy hh:n	nm:ss AM/FM
Analog Inputs Cold Water <u>Makeup Flow</u> 3.39 gpm	eter Upper Limit: 150.00 GPM	
Heat Pump Inlet Water Flow	eter Upper Limit: 50.00 GPM	
Hot Water Return Flow	eter Upper Limit: 50.00 GPM	
	Water Tank HD On *** °F Input Status: 16	Back
If an Input Status shows on a parameter on the Analog Inp screen, press the Info button display error descriptions.	ny ut Maalog Info	Jul/30/2024 09 04 48 AM ᠾ

Back

3.B.3 Digital Inputs and Outputs

The Digital Inputs column displays the status of the Swing Tank connection. When illuminated, the Swing Tank Monitor indicates that heating elements in the swing tank are energized.

The Digital Outputs column displays the Swing Tank Interrupt status. When illuminated, it indicates that the TSC logic is interrupting the swing tank elements. Back-up Heat Source and Heat Demand and Pump Enable lights are illuminated when the TSC is calling for them to be activated.

₩ 🕅	mmm/dd/yyyy hh:mm:ss AM/PM
Digital Inputs	Digital Outputs
Swing Tank Monitor	Swing Tank Interrupt
	🥏 Back-up Heat Source 1 - Heat Demand
	Back-up Heat Source 1 - Pump Enable
	Back-up Heat Source 2 - Heat Demand
	🔵 Back-up Heat Source 2 - Pump Enable
	Back

3.B.4 Cascade Settings

With User Level access, this is a read only screen that shows the status and control parameters of all cascaded heat pumps. This screen is active when multiple heat pumps are in a cascade system, but also shows in systems with one heat pump.

` ि 🗙 📟		mmm/dd/yyyy hh:mm:ss AM PM 😈 User
H2O Temp Setpoint	155 °F	
T ON Temp	160 °F	T OFF Temp 160 °F Staging From T ON
System Temperature	Decreasing	Check Period 10 sec Next Check 04 sec
Demand Percent	0 %	
Heat Pumps	0 demanded	of 0 target 2 available of 6 total
Stage Band	10.00 °F	When the controlling TC is this far off from the setpoint, all heat pumps can be turned on.
Stage Status	Target Reached	Stage Period 00:05 MM:SS Next Stage 00:05 MM:SS
		Installer
		mmm/dd/yyyy hh:mm:ss A 1/PM
		H2O Temp Setpoint 155 °F
		T ON Temp 160 °F T OFF Temp 160 °F Staging From T ON
		System Temperature Decreasing Check Period 10 sec Next Check 05 sec
		Demand Percent 0 %
With Installer Level	access.	Heat Pumps 0 demanded of 0 target 2 available of 6 total
the Stage Band ten	,	Stage Band 10.00 °F When the controlling TC is this far off from the setpoint, all heat pumps can be turned on.
and Stage Period ti	•	Stage Status Target Reached Stage Period 00:05 MM:SS Next Stage 00:05 MM:SS
modified. The Stag		
amount of time before		
heat pump is stage	d on or off.	

3.B.5 Heat Pump Details

This screen (multiple pages if cascading more than 6 heat pumps) shows:

- Available / connected heat pumps
- Whether there is a current heat demand
- Status and run hours of each heat pump.

Note: The cascade control logic enables the heat pump with the lowest recent run hours first in the heat demand staging sequence. When "Connected" is illuminated, it indicates that the heat pump is communicating with the TSC. When "Heat Demand" is illuminated, it indicates that this heat pump is being called for heat.

6	Details	Page 1		mmm/dd/yyyy	hh:mm:ss AM/PM	Ъ
		Connected	Heat Demand	Status	Run Hours	
Heat Pump	1	0	۲	Standby	0	
Heat Pump	2	0	۲	Standby	0	
Heat Pump	3	•	۲			
Heat Pump	4	۲	۲			
Heat Pump	5	۲	۲			
Heat Pump	6	۲	۲			
					E	Back

3.B.6 CTA-2045 Status

This status menu is available when a heat pump is configured with the CTA-2045 option. It is read-only diagnostic information. This screen shows information about the connection to and from the CTA-2045 gateway and the TSC (Smart Grid Device, shown as SGD on the screen).

$\boldsymbol{\times}$	CTA-2045	mmm/dd/yyyy	hh:mm:ss	AM/PM	D
Gateway to SGD	DR Command: Event Duration Time: Event Duration Time Remaining: UCM Customer Override: Outside Connection Status:	End Shed/Run 00:00:0 00:00:0 No UCM to SGD Custo No/Lost Conn	0 0 omer Override		
SGD to Gateway	State Query Response: Commodity Read: Efficiency Level: Get User Preference Level:	Idle, Opted O SGD to UCM Custome			

3.B.7 Schedule (Operating Mode)

This menu allows for the option to change the operating mode between Schedule 1 and Schedule 2, for each day of the week. The right side of the screen shows the current operating mode, control sensor setup, and setpoint temperatures of the system (heat pump(s), backup heater(s), and swing tank).

When either Edit button is selected, the following screens allow for changing operating modes on an hourly basis. Select the editable box for each hour to change the mode between Normal, Shed, Load Up, Advance Load Up, and Back Up. Typically, Back Up is not scheduled, but is used only when needed to back up a heat pump that is out of service for maintenance. These operating modes "charge" or "discharge" the storage tanks based on anticipated hourly demand, shifting energy usage to off-peak times, and/or shifting usage to lower energy rate times.

mmm/dd/yyyy hh:mm:ss AM/PM									
Schedule 1									
12 AM	Normal	8 AM	Normal	4 PM	Shed				
1 AM	Normal	9 AM	Normal	5 PM	Shed				
2 AM	Normal	10 AM	Normal	6 PM	Shed				
3 AM	Normal	11 AM	Normal	7 PM	Shed				
4 AM	Normal	12 PM	Load Up	8 PM	Shed				
5 AM	Normal	1 PM	Load Up	9 PM	Shed				
6 AM	Normal	2 PM	Load Up	10 PM	Normal				
7 AM	Normal	3 PM	Load Up	11 PM	Normal				

Back

Image: Schedule 2 Schedule 2										
12 AM	Normal	8 AM	Normal	4 PM	Normal					
1 AM	Normal	9 AM	Normal	5 PM	Normal					
2 AM	Normal	10 AM	Normal	6 PM	Normal					
3 AM	Normal	11 AM	Normal	7 PM	Normal					
4 AM	Normal	12 PM	Normal	8 PM	Normal					
5 AM	Normal	1 PM	Normal	9 PM	Normal					
6 AM	Normal	2 PM	Normal	10 PM	Normal					
7 AM	Normal	3 PM	Normal	11 PM	Normal					

3.B.8 IP Address

The IP Addresses shown are read-only, with User Level access. Additionally, the PLC logic and firmware versions are provided on this screen.

i in the second	mmm/dd/y	yyy hh:mm:ss AM/PM ᠾ
	CPU IP Settings IP Address: 192.168.100.99 Subnet Mask: 255.255.255.0 Default Gateway: 0.0.0.0 Refresh Apply Panel IP Settings	Logic Version: Tank System Controller 2024_07_30_DemandSimulator Firmware Version: 1.37.79
	IP Address: 10.4.7.20 Subnet Mask: 255.255.255.0 Default Gateway: 10.4.7.50 Refresh DHCP	Back

IP Addresses must be set if more than one HPWH is on the same network, as in a TSC system. Installer Level access is required to set up IP Addresses. Each address needs to be unique for each unit on the network. If connecting to the building network, the IT department will need to be involved in providing access and IP schemes which will work within the building network security.

mmm/dd,	/yyyy hh:mm:ss AM/PM
CPU IP Settings IP Address: 192,168,100,9 Subnet Mask: 255,255,255, Default Gateway: 0,0,0, Refresh Apply	0 Firmware Version:
Panel IP Settings IP Address: 10 . 4 . 7 . 2 Subnet Mask: 255 . 255 . 255 . Default Gateway: 10 . 4 . 7 . 5	0
Refresh DHCP Apply	Back

3.B.9 Setup

The following two screens are used for setup and configuration of the tank system. Installer Level access is needed.

On the first screen, the first two columns indicate the number of heat pumps, heat pump capacity, storage tank details, and the total kW of backup heaters (if installed). The rest of the screen relates to the use of a swing tank and its kW rating, Control Mode (using the CTA-2045 option device or user-entered operating mode schedule), use of M&V (measurement and verification requires each heat pump to have a power meter installed), and selection for optional backup heaters and pumps.

The second screen is used to configure the remaining optional temperature sensors and flow meter inputs. The Swing Tank Monitor provides feedback to the TSC's PLC, for confirmation that the swing tank heater is activated. Note: The measurement and verification functionality is contingent on some of these sensors being setup and installed.

3.B.10 Manual Control

The following screen is helpful for system commissioning, as it allows individual devices to be manually operated by selecting the "Manual" setting. Installer Level access is needed. Before exiting the Installer security level, it's recommended that all active devices be set to Auto operation/mode.

_ ि 🔧 🛯	nual Introl	mmm/dd/yyyy	hh:mm:ss AM/PM	
	Heat Pump (s)	Swing Tank I	nterrupt	
	Manual	Manual		
	Auto	Auto		
_				
	Backup Heaters	Backup Heate	ers Pumps	
1	Manual	Manual		
1	Auto	Auto		
	Manual	Manual		
2	 Auto 	Auto		
			I	ВАСК

3.B.11 Change Mode Setpoints

Installer level access is needed to interact with the Change Mode Setpoints screen.

This menu provides the ability to modify the operational setpoints and parameters of the five operating modes (Normal, Shed, Load Up, Advance Load Up, and Back Up). Note: There are two additional modes (Grid Emergency and Critical Peak Event) that can be defined when the CTA-2045 option is used and selected as the Control Mode (found in the Setup menu). All values can be modified by first pressing the Edit button at the top of the screen.

The Heat Pump column provides the ability to change the Heat Pump Setpoint (desired temperature supplied by each heat pump), the Tank System Setpoint (control point used by the On and Off Sensors), and the specific controlled temperature probes desired for each mode's On and Off sensor.

The Backup Heaters column allows for the selection of the controlling temperature probe location, as well as the On and Off Temp values (Note: The "Both On Temp" selection is only necessary when using more than one backup heat source.)

The Swing Tank column allows for the setting of the swing tank On and Off temperature control. This control is based on the temperature reading of the Swing Tank Temperature Sensor.

Sensor #	Description	Tank Sensor Location
2	Tank 10-15%	10-15% (Lowest sensor in Tank System)
3	Tank 25-35%	25-35% (Second lowest sensor in Tank System)
4	Tank 40-50%	40-50% (Middle sensor in Tank System)
5	Tank 60-70%	60-70% (Second highest sensor in Tank System)
6	Tank 75-85%	75-85% (Highest sensor in Tank System)

Table 3. Temperature Sensor Key

Change Mode Setpoints (continued)

To change each mode's control attributes, select the box to the left of the Edit button and the following selection choices appear.

68	Mode Setpoints	Iul/30/2024_01_41	45 PM 🚹
		Back Up	
Heat Pump Enabled 🗸		Normal Enab	
Heat Pump Setpoint	160	Shed N Temp	122 °F
Tank System Setpoint	145	Load Up	130 °F
ON Sensor	Tank 4(
OFF Sensor	Tank 25	Advance Load Up	
		Ok Cancel He	lp Back

All five modes (seven if using CTA-2045 control) are editable, with the ability to change settings. Each mode also allows the installer to enable or disable selecting "Enabled" check box. For example, it would be common to un-check the Back Up heaters in the Shed mode.

3.B.12 Factory Reset

Factory Reset will return all settings (other than IP addresses) to factory defaults. Installer Level access is needed to perform a Factory Reset.

63	Factory Reset Jul/30/2024	12 01 16 PM 👖
	A factory reset will revert settings back to their factor	y values.
	Any settings changes made for this installation will Perform	be lost.
	Factory Reset	
		Back

Section 4 Alarms and Faults

Alarms - Annunciation Only								
Annunciated Alarm/Fault	Description	Indicates	Corrective Action					
Cold Water Makeup Flow Sensor	Cold Water Makeup Flow Sensor Alarm.	There is an issue with the cold water makeup flow sensor.	If the flow sensor is not intended to be used, unselect it in the setup menu. Otherwise, check for proper wiring and function.	3				
Hot Water Return Flow Sensor	Hot Water Return Flow Sensor Alarm.	There is an issue with the return water flow sensor.	If the flow sensor is not intended to be used, unselect it in the setup menu. Otherwise, check for proper wiring and function.	4				
Heat Pump Flow Sensor	Heat Pump Flow Sensor Alarm.	There is an issue with the heat pump flow sensor.	If the flow sensor is not intended to be used, unselect it in the setup menu. Otherwise, check for proper wiring and function.	5				
Cold Water Makeup Temperature Sensor	Cold Water Makeup Flow Sensor Alarm.	There is an issue with the cold water makeup flow sensor.	Inspect for proper wiring.	6				
Mixing Valve Outlet Temperature Sensor	The mixing valve outlet temperature sensor is not reporting valid data.	The sensor is either disconnected or not reading properly.	Inspect for proper wiring.	7				
Hot Water Return Temperature Sensor	The hot water return temperature sensor is not reporting valid data.	The sensor is either disconnected or not reading properly.	Inspect for proper wiring.	8				
Heat Pump Inlet Water Temperature Sensor	The heat pump inlet water temperature sensor is not reporting valid data.	The sensor is either disconnected or not reading properly.	Inspect for proper wiring.	9				
Tank Farm 10% Sensor	The tank farm 10% sensor is not reporting valid data.	The sensor is either disconnected or not reading properly.	Inspect for proper wiring.	10				
Tank Farm 25% Sensor	The tank farm 20% sensor is not reporting valid data.	The sensor is either disconnected or not reading properly.	Inspect for proper wiring.	11				
Tank Farm 40% Sensor	The tank farm 40% sensor is not reporting valid data.	The sensor is either disconnected or not reading properly.	Inspect for proper wiring.	12				
Tank Farm 60% Sensor	The tank farm 60% sensor is not reporting valid data.	The sensor is either disconnected or not reading properly.	Inspect for proper wiring.	13				
Tank Farm 75% Sensor	The tank farm 75% sensor is not reporting valid data.	The sensor is either disconnected or not reading properly.	Inspect for proper wiring.	14				
Heat Pump 1 Communication	The Tank System Controller has lost communications to Heat Pump #1.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	15				
Heat Pump 2 Communication	The Tank System Controller has lost communications to Heat Pump #2.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	16				

Alarms and Faults (continued)

		Alarms - Annunciation	Only	
Annunciated Alarm/Fault	Description	Indicates	Corrective Action	Alarm ID
Heat Pump 3 Communication	The Tank System Controller has lost communications to Heat Pump #3.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	17
Heat Pump 4 Communication	The Tank System Controller has lost communications to Heat Pump #4.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	18
Heat Pump 5 Communication	The Tank System Controller has lost communications to Heat Pump #5.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	19
Heat Pump 6 Communication	The Tank System Controller has lost communications to Heat Pump #6.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	20
Heat Pump 7 Communication	The Tank System Controller has lost communications to Heat Pump #7.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	21
Heat Pump 8 Communication	The Tank System Controller has lost communications to Heat Pump #8.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	22
Heat Pump 9 Communication	The Tank System Controller has lost communications to Heat Pump #9.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	23
Heat Pump 10 Communication	The Tank System Controller has lost communications to Heat Pump #10.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	24
Heat Pump 11 Communication	The Tank System Controller has lost communications to Heat Pump #11.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	25
Heat Pump 12 Communication	The Tank System Controller has lost communications to Heat Pump #12.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	26
Heat Pump 13 Communication	The Tank System Controller has lost communications to Heat Pump #13.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	27
Heat Pump 14 Communication	The Tank System Controller has lost communications to Heat Pump #14.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	28
Heat Pump 15 Communication	The Tank System Controller has lost communications to Heat Pump #15.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	29
Heat Pump 16 Communication	The Tank System Controller has lost communications to Heat Pump #16.	There is a heat pump that is configured in the system but not connected to the Tank System Controller.	Confirm the network configuration of the tank system controller and the heat pump. Ensure that all network cables are connected correctly.	30

		Alarms - Annunciation (Dnly	
Annunciated Alarm/Fault	Description	Indicates	Corrective Action	Alarm ID
Swing Tank Temperature Sensor	The swing tank temperature sensor is not reporting valid data.	The sensor is either disconnected or not reading properly.	Inspect for proper wiring.	34
High Return Water Temperature	The water returning to the heat pump is above the threshold.	The system will automatically resume operation when the return water temperature returns to normal ranges.	Inspect for proper wiring and that the reading is valid.	32
		Faults	•	
Annunciated Alarm/Fault	Description	Indicates	Corrective Action	Alarm ID
Remote I/O Communication Fault	Remote I/O Communication Failure.	PLC cannot communicate with remote I/O device.	Ensure remote IO is connected and configured properly. Ensure there are no other devices on the network with the same IP address as the remote I/O unit.	1
Mode Setpoints Data Table Empty	The "Mode Setpoints" Data Table is likely empty.	There is missing data in the "Change Mode Setpoints" submenu.	Check that the "Mode Setpoints" table is populated with the correct setpoints. These can be edited by navigating to "Home > Service > Change Mode Setpoints"	2
Swing Tank Control	Swing Tank Control Fault.	The swing tank interrupt and swing tank monitor do not agree on the swing tank state.	Ensure that the swing tank control wiring is correct (both swing tank interrupt and swing tank monitor). Ensure that there is remote I/O communication.	31
Tank Farm Temperature Sensors	Tank farm temperature sensors fault.	This indicates that all 6 tank farm sensors have alarmed.	Check wiring of all sensors. It sensors are connected properly, there may be an issue with the RTD I/O module.	33

Alarms and Faults (continued)

Page	35
------	----

	Wire	WIRE LABEL	AWG	COLOR	TYPE
	-	ТВЗ:1А	12	BK	UL 1015
	Schematics	TB3:36A, TB3:39A, TB3:42A, TB3:45A, TB3:48A, TB3:51A, TB3:54A, TB3:57A, TB3:60A, TB3:63A, TB3:66A, TB3:69A	18	ВК	UL 1015
		TB3:6A, TB3:35A, TB3:40A, TB3:41A, TB3:46A, TB3:47A, TB3:52A, TB3:53A, TB3:58A, TB3:59A, TB3:64A, TB3:65A, TB3:70A	18	W	UL 1015
		TB3:8C, TB3:8D, TB3:7A, TB3:8A	18	G/Y	UL 1015
		TB3:37A, TB3:43A, TB3:49A, TB3:55A, TB3:61A, TB3:67A	18	G	UL 1015
		TB3:14D, TB3:14C, TB3:14A, TB3:15C, TB3:15A, TB3:16C, TB3:16A, TB3:17C, TB3:17A, TB3:18C, TB3:18A, TB3:15B, TB3:15D	18	W/BL	UL 1015
		TB3:9D, TB3:9C, TB3:9A, TB3:10C, TB3:10A, TB3:11C, TB3:11A, CR1:9, CR2:13, CR3:13, CR4:13, CR5:13, CR6:13, TB3:19A, TB3:20A, TB3:21A, TB3:22A, TB3:23A, TB3:24A, TB3:25A, TB3:26A, TB3:27A, TB3:28A, TB3:29A, TB3:30A, TB3:31A, TB3:32A, TB3:33A, TB3:34A	18	BL	UL 1015
		ТВЗ:3А, ТВЗ:4А, ТВЗ:5А	18	R	UL 1015
		L1A	14	BK	UL 1015
		ТВЗ:2А	14	w	UL 1015
		ТВЗ:7С, ТВЗ:8В	14	G/Y	UL 1015

TB3:1 thru TB3:6; TB3:19 thru TB3:34 Single level feed through terminal block.

TB3:9 thru TB3:18 Single level feed through terminal block. Two connection to two connection.

TB3:35 thru TB3:70. Double level feed through terminal block. 2 circuits.

TB3:7 & TB3:8 Grounding terminal block. Two connection to two connection.

Notes:													

Dimensions and specifications subject to change without notice in accordance with our policy of continuous product improvement.

Customer Service and Product Support: 800.900.9276 • Fax 800.559.1583 Headquarters: 20 Industrial Way, Rochester, NH, USA 03867 • 603.335.6300 • Fax 603.335.3355 9 Brigden Gate, Halton Hills, Ontario, Canada L7G 0A3 (905) 203-0600 Fax: (905) 636-0666